import logging import threading from concurrent.futures import ThreadPoolExecutor from typing import Dict, List, Optional, Union from opencompass.models.base import BaseModel, LMTemplateParser from opencompass.utils.logging import get_logger from opencompass.utils.prompt import PromptList PromptType = Union[PromptList, str] def valid_str(string, coding='utf-8'): """decode text according to its encoding type.""" invalid_chars = [b'\xef\xbf\xbd'] bstr = bytes(string, coding) for invalid_char in invalid_chars: bstr = bstr.replace(invalid_char, b'') ret = bstr.decode(encoding=coding, errors='ignore') return ret class TurboMindTisModel(BaseModel): """Model wrapper for TurboMind Triton Inference Server gRPC API. Args: path (str): The name of OpenAI's model. tis_addr (str): The address (ip:port format) of turbomind's triton inference server max_seq_len (int): The maximum allowed sequence length of a model. Note that the length of prompt + generated tokens shall not exceed this value. Defaults to 2048. meta_template (Dict, optional): The model's meta prompt template if needed, in case the requirement of injecting or wrapping of any meta instructions. """ is_api: bool = True def __init__( self, path: str, tis_addr: str = '0.0.0.0:33337', max_seq_len: int = 2048, meta_template: Optional[Dict] = None, ): super().__init__(path=path, max_seq_len=max_seq_len, meta_template=meta_template) self.logger = get_logger() self.template_parser = LMTemplateParser(meta_template) self.eos_token_id = None if meta_template and 'eos_token_id' in meta_template: self.eos_token_id = meta_template['eos_token_id'] self.tis_addr = tis_addr def generate( self, inputs: List[str or PromptList], max_out_len: int = 512, temperature: float = 1.0, ) -> List[str]: """Generate results given a list of inputs. Args: inputs (List[str or PromptList]): A list of strings or PromptDicts. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. temperature (float): What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Defaults to 0.7. Returns: List[str]: A list of generated strings. """ with ThreadPoolExecutor() as executor: results = list( executor.map(self._generate, inputs, [max_out_len] * len(inputs), [temperature] * len(inputs))) return results def wait(self): """Wait till the next query can be sent. Applicable in both single-thread and multi-thread environments. """ return self.token_bucket.get_token() def _generate(self, prompt: str or PromptList, max_out_len: int, temperature: float) -> str: """Generate results given a list of inputs. Args: prompt (str or PromptList): A string or PromptDict. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. temperature (float): What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Returns: str: The generated string. """ assert type( prompt) is str, 'We only support string for TurboMind RPC API' from lmdeploy.serve.turbomind.chatbot import Chatbot chatbot = Chatbot(self.tis_addr, temperature=temperature, capability='completion', top_k=1, log_level=logging.ERROR) for status, text, n_token in chatbot.stream_infer( session_id=threading.currentThread().ident, prompt=prompt, request_output_len=max_out_len, sequence_start=True, sequence_end=True): continue response = valid_str(text) response = response.replace('', '') return response