import importlib import json import os.path as osp from typing import List import numpy as np import torch from decord import VideoReader, cpu from mmengine.dataset import Compose from PIL import Image from torch.utils.data import Dataset from opencompass.registry import DATASETS @DATASETS.register_module() class SEEDBenchDataset(Dataset): """Dataset to load SEED-Bench dataset. Args: ann_file (str): The path of the annotation file. cc3m_path (str): The data path of the image dimension(1-9). sthv2_path (str): The data path of the dimension 10. epic_kitchens_path (str): The data path of the dimension 11. breakfast_path (str): The data path of the dimension 12. image_pipeline (List[dict]): The data transforms for image. video_pipeline (List[dict]): The data transforms for video. only_image (bool): Whether run SEED-Bench only with image data. Defaults to True. """ def __init__( self, ann_file: str, cc3m_path: str, sthv2_path: str, epic_kitchens_path: str, breakfast_path: str, image_pipeline: List[dict], video_pipeline: List[dict], only_image: bool = True, ) -> None: ann_file = json.load(open(ann_file, 'rb')) if 'questions' in ann_file.keys(): self.ann_file = ann_file['questions'] self.cc3m_path = cc3m_path self.sthv2_path = sthv2_path self.epic_kitchens_path = epic_kitchens_path self.breakfast_path = breakfast_path self.image_pipeline = Compose(image_pipeline) if only_image: image_ann_file = [ ann for ann in self.ann_file if ann['data_type'] == 'image' ] self.ann_file = image_ann_file if not only_image: raise NotImplementedError self.video_pipeline = Compose(video_pipeline) def __len__(self) -> None: return len(self.ann_file) def __getitem__(self, idx: str) -> dict: item = self.ann_file[idx] data = { 'question': item['question'], 'answer': item['answer'], 'choices': [ item['choice_a'], item['choice_b'], item['choice_c'], item['choice_d'] ], 'data_type': item['data_type'], 'question_id': item['question_id'], 'question_type_id': item['question_type_id'], 'index': idx, } if item['data_type'] == 'image': data_path = osp.join(self.cc3m_path, item['data_id']) raw_image = Image.open(open(data_path, 'rb')).convert('RGB') data['data_path'] = data_path data['img'] = raw_image data = self.image_pipeline(data) elif item['data_type'] == 'video': if item['question_type_id'] == 10: data_path = osp.join(self.sthv2_path, item['data_id']) data['data_path'] = data_path elif item['question_type_id'] == 11: data_path = osp.join(self.epic_kitchens_path, item['data_id']) data['data_path'] = data_path data['segment'] = item['segment'] elif item['question_type_id'] == 12: data_path = osp.join(self.breakfast_path, item['data_id']) data['data_path'] = data_path data['segment'] = item['segment'] else: raise ValueError('The question type id is not valid.') # preprocessing videos in evaluation dimension 10-12 use_pyav = False if 'segment' in data.keys(): segment = data['segment'] if isinstance(segment[0], int): # using pyav for decoding videos in evaluation dimension 12 use_pyav = True start, end = segment[0], segment[1] else: start = 0.0 end = 0.0 if use_pyav: # using pyav for videos in evaluation dimension 12 av = importlib.importmodule('av') reader = av.open(data_path) frames = [ torch.from_numpy(f.to_rgb().to_ndarray()) for f in reader.decode(video=0) ] video_len = len(frames) start_frame, end_frame = start, end end_frame = min(end_frame, video_len) offset = self.get_index(end_frame - start_frame, 8) frame_indices = offset + start_frame buffer = torch.stack([frames[idx] for idx in frame_indices]) buffer = buffer.numpy() else: # using decord for videos in evaluating dimension 10-11 import io import mmengine.fileio as fileio file_obj = io.BytesIO(fileio.get(data_path)) vr = VideoReader(file_obj, num_threads=1, ctx=cpu(0)) video_len = len(vr) fps = vr.get_avg_fps() if 'segment' in data.keys(): # obtain start and end frame for the video segment # in evaluation dimension 11 start_frame = int(min(max(start * fps, 0), video_len - 1)) end_frame = int(min(max(end * fps, 0), video_len - 1)) tot_frames = int(end_frame - start_frame) offset = self.get_index(tot_frames, 8) frame_indices = offset + start_frame else: # sample frames of the video in evaluation dimension 10 frame_indices = self.get_index(video_len - 1, 8) vr.seek(0) buffer = vr.get_batch(frame_indices) buffer = buffer.asnumpy() data['imgs'] = buffer data = self.video_pipeline(data) else: raise ValueError('The data type is not valid.') return data def get_index(self, num_frames, num_segments): if num_segments > num_frames: offsets = np.array([idx for idx in range(num_frames)]) else: # uniform sampling seg_size = float(num_frames - 1) / num_segments start = int(seg_size / 2) offsets = np.array([ start + int(np.round(seg_size * idx)) for idx in range(num_segments) ]) return offsets