datasets = [ [ dict( abbr='ceval-computer_network', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict( prompt= '以下是中国关于计算机网络考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict( prompt= '以下是中国关于计算机网络考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict( prompt= '以下是中国关于计算机网络考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict( prompt= '以下是中国关于计算机网络考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type= 'opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='computer_network', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), ], ] eval = dict(runner=dict(task=dict())) models = [ dict( abbr='llama-7b-hf', batch_padding=False, batch_size=8, max_out_len=100, max_seq_len=2048, model_kwargs=dict(device_map='auto'), path='huggyllama/llama-7b', run_cfg=dict(num_gpus=1, num_procs=1), tokenizer_kwargs=dict( padding_side='left', truncation_side='left', use_fast=False), tokenizer_path='huggyllama/llama-7b', type='opencompass.models.HuggingFaceCausalLM'), ] work_dir = './outputs/default/20240304_175403'