from mmengine.config import read_base from opencompass.datasets.circular import (CircularCEvalDataset, CircularMMLUDataset, CircularCMMLUDataset, CircularCSQADataset, CircularARCDataset, CircularHSWAGDataset, CircularOBQADataset, CircularRaceDataset, CircularEvaluator) from opencompass.summarizers import CircularSummarizer with read_base(): from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from .datasets.cmmlu.cmmlu_gen_c13365 import cmmlu_datasets from .datasets.hellaswag.hellaswag_gen_6faab5 import hellaswag_datasets from .datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets from .datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets from .datasets.commonsenseqa.commonsenseqa_gen_1da2d0 import commonsenseqa_datasets from .datasets.obqa.obqa_gen_9069e4 import obqa_datasets from .datasets.race.race_gen_69ee4f import race_datasets from .models.hf_internlm.hf_internlm_chat_7b import models as hf_internlm_chat_7b_model from .models.hf_internlm.hf_internlm_chat_20b import models as hf_internlm_chat_20b_model from .models.qwen.hf_qwen_7b_chat import models as hf_qwen_7b_chat_model from .models.qwen.hf_qwen_14b_chat import models as hf_qwen_14b_chat_model from .summarizers.groups.mmlu import mmlu_summary_groups from .summarizers.groups.cmmlu import cmmlu_summary_groups from .summarizers.groups.ceval import ceval_summary_groups for ds, t in [ (ceval_datasets, CircularCEvalDataset), (mmlu_datasets, CircularMMLUDataset), (cmmlu_datasets, CircularCMMLUDataset), (hellaswag_datasets, CircularHSWAGDataset), (ARC_e_datasets, CircularARCDataset), (ARC_c_datasets, CircularARCDataset), (commonsenseqa_datasets, CircularCSQADataset), (obqa_datasets, CircularOBQADataset), (race_datasets, CircularRaceDataset), ]: for d in ds: d['type'] = t d['abbr'] = d['abbr'] + '-circular-4' d['eval_cfg']['evaluator'] = {'type': CircularEvaluator, 'circular_pattern': 'circular'} d['circular_patterns'] = 'circular' datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], []) models = sum([v for k, v in locals().items() if k.endswith("_model")], []) # config summarizer other_summary_groups = [ {'name': 'average', 'subsets': ['ceval', 'mmlu', 'cmmlu', 'hellaswag', 'ARC-e', 'ARC-c', 'commonsense_qa', 'openbookqa_fact', 'race-middle', 'race-high']}, ] origin_summary_groups = sum([v for k, v in locals().items() if k.endswith("_summary_groups")], []) new_summary_groups = [] for item in origin_summary_groups: new_summary_groups.append( { 'name': item['name'] + '-circular-4', 'subsets': [i + '-circular-4' for i in item['subsets']], } ) summarizer = dict( type=CircularSummarizer, metric_types=['acc_origin', 'perf_circular'], dataset_abbrs = [ 'average-circular-4', 'ceval-circular-4', 'mmlu-circular-4', 'cmmlu-circular-4', 'hellaswag-circular-4', 'ARC-e-circular-4', 'ARC-c-circular-4', 'commonsense_qa-circular-4', 'openbookqa_fact-circular-4', 'race-middle-circular-4', 'race-high-circular-4', 'ceval-humanities-circular-4', 'ceval-stem-circular-4', 'ceval-social-science-circular-4', 'ceval-other-circular-4', 'mmlu-humanities-circular-4', 'mmlu-stem-circular-4', 'mmlu-social-science-circular-4', 'mmlu-other-circular-4', 'cmmlu-humanities-circular-4', 'cmmlu-stem-circular-4', 'cmmlu-social-science-circular-4', 'cmmlu-other-circular-4', 'cmmlu-china-specific-circular-4', ], summary_groups=new_summary_groups, )