from mmengine.config import read_base from opencompass.models.turbomind import TurboMindModel with read_base(): # choose a list of datasets from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets from .datasets.race.race_gen_69ee4f import race_datasets from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets # and output the results in a choosen format from .summarizers.medium import summarizer datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) internlm_meta_template = dict(round=[ dict(role='HUMAN', begin='<|User|>:', end='\n'), dict(role='BOT', begin='<|Bot|>:', end='\n', generate=True), ], eos_token_id=103028) internlm2_meta_template = dict( round=[ dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'), dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True), ], eos_token_id=92542 ) # config for internlm-chat-7b internlm_chat_7b = dict( type=TurboMindModel, abbr='internlm-chat-7b-turbomind', path='internlm/internlm-chat-7b', engine_config=dict(session_len=2048, max_batch_size=32, rope_scaling_factor=1.0), gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100), max_out_len=100, max_seq_len=2048, batch_size=32, concurrency=32, meta_template=internlm_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), end_str='', ) # config for internlm-chat-7b internlm2_chat_7b = dict( type=TurboMindModel, abbr='internlm2-chat-7b-turbomind', path='internlm/internlm2-chat-7b', engine_config=dict(session_len=2048, max_batch_size=32, rope_scaling_factor=1.0), gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100), max_out_len=100, max_seq_len=2048, batch_size=32, concurrency=32, meta_template=internlm2_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), end_str='<|im_end|>' ) # config for internlm-chat-20b internlm_chat_20b = dict( type=TurboMindModel, abbr='internlm-chat-20b-turbomind', path='internlm/internlm-chat-20b', engine_config=dict(session_len=2048, max_batch_size=8, rope_scaling_factor=1.0), gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100), max_out_len=100, max_seq_len=2048, batch_size=8, concurrency=8, meta_template=internlm_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), end_str='', ) models = [internlm_chat_20b]