from opencompass.multimodal.models.minigpt_4 import (
MiniGPT4VQAPromptConstructor,
MiniGPT4VQAPostProcessor,
)
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.LoadImageFromFile'),
dict(type='mmpretrain.ToPIL', to_rgb=True),
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711)),
dict(
type='mmpretrain.PackInputs',
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'],
meta_keys=['question_id', 'image_id'],
)
]
dataset = dict(type='mmpretrain.GQA',
data_root='data/gqa',
data_prefix='images',
ann_file='annotations/testdev_balanced_questions.json',
pipeline=val_pipeline)
minigpt_4_gqa_dataloader = dict(batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler',
shuffle=False))
# model settings
minigpt_4_gqa_model = dict(type='minigpt-4',
low_resource=False,
img_size=224,
max_length=10,
llama_model='/path/to/vicuna_weights_7b/',
prompt_constructor=dict(
type=MiniGPT4VQAPromptConstructor,
image_prompt='###Human: ',
reply_prompt='###Assistant:'),
post_processor=dict(type=MiniGPT4VQAPostProcessor))
# evaluation settings
minigpt_4_gqa_evaluator = [dict(type='mmpretrain.GQAAcc')]
minigpt_4_gqa_load_from = '/path/to/prerained_minigpt4_7b.pth' # noqa