from opencompass.multimodal.models.minigpt_4 import ( MiniGPT4VQAPromptConstructor, MiniGPT4VQAPostProcessor, ) # dataloader settings val_pipeline = [ dict(type='mmpretrain.LoadImageFromFile'), dict(type='mmpretrain.ToPIL', to_rgb=True), dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict(type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), dict( type='mmpretrain.PackInputs', algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'], meta_keys=['question_id', 'image_id'], ) ] dataset = dict( type='mmpretrain.COCOVQA', data_root='data/coco', data_prefix='images/val2014', question_file='annotations/v2_OpenEnded_mscoco_val2014_questions.json', ann_file='annotations/v2_mscoco_val2014_annotations.json', pipeline=val_pipeline) minigpt_4_vqav2_dataloader = dict(batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False)) # model settings minigpt_4_vqav2_model = dict( type='minigpt-4', low_resource=False, img_size=224, max_length=10, llama_model='/path/to/vicuna_weights_7b/', prompt_constructor=dict(type=MiniGPT4VQAPromptConstructor, image_prompt='###Human: ', reply_prompt='###Assistant:'), post_processor=dict(type=MiniGPT4VQAPostProcessor)) # evaluation settings minigpt_4_vqav2_evaluator = [dict(type='mmpretrain.VQAAcc')] minigpt_4_vqav2_load_from = '/path/to/prerained_minigpt4_7b.pth' # noqa