from opencompass.multimodal.models.qwen import QwenVLMMBenchPromptConstructor, QwenVLBasePostProcessor # dataloader settings val_pipeline = [ dict(type='mmpretrain.torchvision/Resize', size=(448, 448), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict(type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), dict(type='mmpretrain.PackInputs', algorithm_keys=[ 'question', 'options', 'category', 'l2-category', 'context', 'index', 'options_dict' ]) ] dataset = dict(type='opencompass.MMBenchDataset', data_file='data/mmbench/mmbench_test_20230712.tsv', pipeline=val_pipeline) qwen_mmbench_dataloader = dict(batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False)) # model settings qwen_model = dict( type='qwen-vl-base', pretrained_path='Qwen/Qwen-VL', # or Huggingface repo id prompt_constructor=dict(type=QwenMMBenchPromptConstructor), post_processor=dict(type=QwenVLBasePostProcessor) ) # evaluation settings qwen_mmbench_evaluator = [ dict(type='opencompass.DumpResults', save_path='work_dirs/qwenvl-base-7b-mmbench.xlsx') ]