from opencompass.multimodal.models.qwen import QwenVLChatScienceQAPromptConstructor # dataloader settings val_pipeline = [ dict(type='mmpretrain.LoadImageFromFile'), dict(type='mmpretrain.ToPIL', to_rgb=True), dict(type='mmpretrain.torchvision/Resize', size=(448, 448), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict(type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), dict(type='mmpretrain.PackInputs', algorithm_keys=[ 'question', 'gt_answer', 'choices', 'hint', 'lecture', 'solution' ]) ] dataset = dict(type='mmpretrain.ScienceQA', data_root='./data/scienceqa', split='val', split_file='pid_splits.json', ann_file='problems.json', image_only=True, data_prefix=dict(img_path='val'), pipeline=val_pipeline) qwen_scienceqa_dataloader = dict(batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False)) # model settings qwen_scienceqa_model = dict( type='qwen-vl-chat', pretrained_path='Qwen/Qwen-VL-Chat', # or Huggingface repo id prompt_constructor=dict(type=QwenVLChatScienceQAPromptConstructor) ) # evaluation settings qwen_scienceqa_evaluator = [dict(type='mmpretrain.ScienceQAMetric')]