from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HFDataset afqmc_reader_cfg = dict( input_columns=['sentence1', 'sentence2'], output_column='label', test_split='train') afqmc_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ 0: dict(round=[ dict( role="HUMAN", prompt= "语句一:“{sentence1}”\n语句二:“{sentence2}”\n语句一与语句二是关于蚂蚁金融产品的疑问,两者所询问的内容是否完全一致?" ), dict(role="BOT", prompt="不完全一致") ]), 1: dict(round=[ dict( role="HUMAN", prompt= "语句一:“{sentence1}”\n语句二:“{sentence2}”\n语句一与语句二是关于蚂蚁金融产品的疑问,两者所询问的内容是否完全一致?" ), dict(role="BOT", prompt="完全一致") ]), }), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer)) afqmc_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) afqmc_datasets = [ dict( type=HFDataset, abbr='afqmc-dev', path='json', data_files='./data/CLUE/AFQMC/dev.json', split='train', reader_cfg=afqmc_reader_cfg, infer_cfg=afqmc_infer_cfg, eval_cfg=afqmc_eval_cfg), ]