from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import FixKRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import CEvalDataset ceval_subject_mapping = { 'computer_network': ['Computer Network', '计算机网络', 'STEM'], 'operating_system': ['Operating System', '操作系统', 'STEM'], 'computer_architecture': ['Computer Architecture', '计算机组成', 'STEM'], 'college_programming': ['College Programming', '大学编程', 'STEM'], 'college_physics': ['College Physics', '大学物理', 'STEM'], 'college_chemistry': ['College Chemistry', '大学化学', 'STEM'], 'advanced_mathematics': ['Advanced Mathematics', '高等数学', 'STEM'], 'probability_and_statistics': ['Probability and Statistics', '概率统计', 'STEM'], 'discrete_mathematics': ['Discrete Mathematics', '离散数学', 'STEM'], 'electrical_engineer': ['Electrical Engineer', '注册电气工程师', 'STEM'], 'metrology_engineer': ['Metrology Engineer', '注册计量师', 'STEM'], 'high_school_mathematics': ['High School Mathematics', '高中数学', 'STEM'], 'high_school_physics': ['High School Physics', '高中物理', 'STEM'], 'high_school_chemistry': ['High School Chemistry', '高中化学', 'STEM'], 'high_school_biology': ['High School Biology', '高中生物', 'STEM'], 'middle_school_mathematics': ['Middle School Mathematics', '初中数学', 'STEM'], 'middle_school_biology': ['Middle School Biology', '初中生物', 'STEM'], 'middle_school_physics': ['Middle School Physics', '初中物理', 'STEM'], 'middle_school_chemistry': ['Middle School Chemistry', '初中化学', 'STEM'], 'veterinary_medicine': ['Veterinary Medicine', '兽医学', 'STEM'], 'college_economics': ['College Economics', '大学经济学', 'Social Science'], 'business_administration': ['Business Administration', '工商管理', 'Social Science'], 'marxism': ['Marxism', '马克思主义基本原理', 'Social Science'], 'mao_zedong_thought': ['Mao Zedong Thought', '毛泽东思想和中国特色社会主义理论体系概论', 'Social Science'], 'education_science': ['Education Science', '教育学', 'Social Science'], 'teacher_qualification': ['Teacher Qualification', '教师资格', 'Social Science'], 'high_school_politics': ['High School Politics', '高中政治', 'Social Science'], 'high_school_geography': ['High School Geography', '高中地理', 'Social Science'], 'middle_school_politics': ['Middle School Politics', '初中政治', 'Social Science'], 'middle_school_geography': ['Middle School Geography', '初中地理', 'Social Science'], 'modern_chinese_history': ['Modern Chinese History', '近代史纲要', 'Humanities'], 'ideological_and_moral_cultivation': ['Ideological and Moral Cultivation', '思想道德修养与法律基础', 'Humanities'], 'logic': ['Logic', '逻辑学', 'Humanities'], 'law': ['Law', '法学', 'Humanities'], 'chinese_language_and_literature': ['Chinese Language and Literature', '中国语言文学', 'Humanities'], 'art_studies': ['Art Studies', '艺术学', 'Humanities'], 'professional_tour_guide': ['Professional Tour Guide', '导游资格', 'Humanities'], 'legal_professional': ['Legal Professional', '法律职业资格', 'Humanities'], 'high_school_chinese': ['High School Chinese', '高中语文', 'Humanities'], 'high_school_history': ['High School History', '高中历史', 'Humanities'], 'middle_school_history': ['Middle School History', '初中历史', 'Humanities'], 'civil_servant': ['Civil Servant', '公务员', 'Other'], 'sports_science': ['Sports Science', '体育学', 'Other'], 'plant_protection': ['Plant Protection', '植物保护', 'Other'], 'basic_medicine': ['Basic Medicine', '基础医学', 'Other'], 'clinical_medicine': ['Clinical Medicine', '临床医学', 'Other'], 'urban_and_rural_planner': ['Urban and Rural Planner', '注册城乡规划师', 'Other'], 'accountant': ['Accountant', '注册会计师', 'Other'], 'fire_engineer': ['Fire Engineer', '注册消防工程师', 'Other'], 'environmental_impact_assessment_engineer': ['Environmental Impact Assessment Engineer', '环境影响评价工程师', 'Other'], 'tax_accountant': ['Tax Accountant', '税务师', 'Other'], 'physician': ['Physician', '医师资格', 'Other'], } ceval_all_sets = list(ceval_subject_mapping.keys()) ceval_datasets = [] for _split in ["val", "test"]: for _name in ceval_all_sets: _ch_name = ceval_subject_mapping[_name][1] ceval_infer_cfg = dict( ice_template=dict( type=PromptTemplate, template={ answer: dict( begin="", round=[ dict( role="HUMAN", prompt= f"以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: " ), dict(role="BOT", prompt=answer), ]) for answer in ["A", "B", "C", "D"] }, ice_token="", ), retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]), inferencer=dict(type=PPLInferencer), ) ceval_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) ceval_datasets.append( dict( type=CEvalDataset, path="./data/ceval/formal_ceval", name=_name, abbr="ceval-" + _name if _split == "val" else "ceval-test-" + _name, reader_cfg=dict( input_columns=["question", "A", "B", "C", "D"], output_column="answer", train_split="dev", test_split=_split), infer_cfg=ceval_infer_cfg, eval_cfg=ceval_eval_cfg, )) del _split, _name, _ch_name