# Use FixKRetriever to avoid hang caused by the Huggingface from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import FixKRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import commonsenseqaDataset commonsenseqa_reader_cfg = dict( input_columns=['question', 'A', 'B', 'C', 'D', 'E'], output_column='answerKey', test_split='validation') _ice_template = dict( type=PromptTemplate, template={ ans: dict( begin='', round=[ dict(role="HUMAN", prompt="Question: {question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nE. {E}\nAnswer: "), dict(role="BOT", prompt=f"{ans}"), ]) for ans in ['A', 'B', 'C', 'D', 'E'] }, ice_token='') commonsenseqa_infer_cfg = dict( ice_template=_ice_template, retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4, 5, 6, 7]), inferencer=dict(type=PPLInferencer)) commonsenseqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) commonsenseqa_datasets = [ dict( abbr='commonsense_qa', type=commonsenseqaDataset, path='./data/commonsenseqa', reader_cfg=commonsenseqa_reader_cfg, infer_cfg=commonsenseqa_infer_cfg, eval_cfg=commonsenseqa_eval_cfg) ]