from mmengine.config import read_base from opencompass.models.openai_api import OpenAI from opencompass.partitioners import SizePartitioner from opencompass.runners import LocalRunner from opencompass.tasks import OpenICLInferTask from opencompass.models.lagent import LagentAgent from opencompass.lagent.actions.python_interpreter import PythonInterpreter from lagent import ReAct from lagent.agents.react import ReActProtocol with read_base(): from .datasets.gsm8k.gsm8k_agent_gen_be1606 import gsm8k_datasets from .datasets.math.math_agent_gen_af2293 import math_datasets from .datasets.MathBench.mathbench_agent_gen_568903 import mathbench_agent_datasets from .summarizers.math_agent import summarizer datasets = [] datasets += gsm8k_datasets datasets += math_datasets datasets += mathbench_agent_datasets system_prompt = """You are a helpful assistant which use tools to solve mathematical reasoning questions. The code must be a function, and the function name must be 'solution'. For mathematics, please use code tool to calculate. The example format is as follows: ``` def solution(): variable_names_with_real_meaning = func(variable) return variable_names_with_real_meaning ```""" protocol = dict( type=ReActProtocol, action=dict(role="ACTION", begin="Tool:", end="\n"), action_input=dict(role="ARGS", begin="Tool Input:", end="\n"), finish=dict(role="FINISH", begin="FinalAnswer:", end="\n"), call_protocol=system_prompt, ) models = [ dict( abbr='gpt-3.5-react', type=LagentAgent, agent_type=ReAct, max_turn=3, llm=dict( type=OpenAI, path='gpt-3.5-turbo', key='ENV', query_per_second=1, max_seq_len=4096, ), actions=[ dict(type=PythonInterpreter), ], protocol=protocol, batch_size=1, ), ] infer = dict( partitioner=dict(type=SizePartitioner, max_task_size=1000), runner=dict( type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLInferTask)), )