from mmengine.config import read_base from opencompass.models.turbomind_tis import TurboMindTisModel with read_base(): # choose a list of datasets from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets # and output the results in a choosen format from .summarizers.medium import summarizer datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) models = [ dict( type=TurboMindTisModel, abbr='internlm-chat-20b-turbomind', path="internlm", tis_addr='0.0.0.0:33337', max_out_len=100, max_seq_len=2048, batch_size=8, run_cfg=dict(num_gpus=1, num_procs=1), ) ]