from opencompass.multimodal.models.llava import LLaVAMMBenchPromptConstructor, LLaVABasePostProcessor # dataloader settings val_pipeline = [ dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict( type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711), ), dict( type='mmpretrain.PackInputs', algorithm_keys=[ 'question', 'category', 'l2-category', 'context', 'index', 'options_dict', 'options', 'split' ], ), ] dataset = dict(type='opencompass.MMBenchDataset', data_file='data/mmbench/mmbench_test_20230712.tsv', pipeline=val_pipeline) llava_mmbench_dataloader = dict( batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False), ) # model settings llava_mmbench_model = dict( type='llava', model_path='/path/to/llava', prompt_constructor=dict(type=LLaVAMMBenchPromptConstructor), post_processor=dict(type=LLaVABasePostProcessor) ) # noqa # evaluation settings llava_mmbench_evaluator = [ dict(type='opencompass.DumpResults', save_path='work_dirs/llava-7b-mmbench.xlsx') ]