import time from concurrent.futures import ThreadPoolExecutor from typing import Dict, List, Optional, Union from opencompass.utils.prompt import PromptList from .base_api import BaseAPIModel PromptType = Union[PromptList, str] class Qwen(BaseAPIModel): """Model wrapper around Qwen. Documentation: https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-thousand-questions/ Args: path (str): The name of qwen model. e.g. `qwen-max` key (str): Authorization key. query_per_second (int): The maximum queries allowed per second between two consecutive calls of the API. Defaults to 1. max_seq_len (int): Unused here. meta_template (Dict, optional): The model's meta prompt template if needed, in case the requirement of injecting or wrapping of any meta instructions. retry (int): Number of retires if the API call fails. Defaults to 2. """ def __init__(self, path: str, key: str, query_per_second: int = 1, max_seq_len: int = 2048, meta_template: Optional[Dict] = None, retry: int = 5, generation_kwargs: Dict = {}): super().__init__(path=path, max_seq_len=max_seq_len, query_per_second=query_per_second, meta_template=meta_template, retry=retry, generation_kwargs=generation_kwargs) import dashscope dashscope.api_key = key self.dashscope = dashscope def generate( self, inputs: List[str or PromptList], max_out_len: int = 512, ) -> List[str]: """Generate results given a list of inputs. Args: inputs (List[str or PromptList]): A list of strings or PromptDicts. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. Returns: List[str]: A list of generated strings. """ with ThreadPoolExecutor() as executor: results = list( executor.map(self._generate, inputs, [max_out_len] * len(inputs))) self.flush() return results def _generate( self, input: str or PromptList, max_out_len: int = 512, ) -> str: """Generate results given an input. Args: inputs (str or PromptList): A string or PromptDict. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. Returns: str: The generated string. """ assert isinstance(input, (str, PromptList)) """ { "messages": [ {"role":"user","content":"请介绍一下你自己"}, {"role":"assistant","content":"我是通义千问"}, {"role":"user","content": "我在上海,周末可以去哪里玩?"}, {"role":"assistant","content": "上海是一个充满活力和文化氛围的城市"}, {"role":"user","content": "周末这里的天气怎么样?"} ] } """ if isinstance(input, str): messages = [{'role': 'user', 'content': input}] else: messages = [] for item in input: msg = {'content': item['prompt']} if item['role'] == 'HUMAN': msg['role'] = 'user' elif item['role'] == 'BOT': msg['role'] = 'assistant' elif item['role'] == 'SYSTEM': msg['role'] = 'system' messages.append(msg) data = {'messages': messages} data.update(self.generation_kwargs) max_num_retries = 0 while max_num_retries < self.retry: self.acquire() try: response = self.dashscope.Generation.call( model=self.path, **data, ) except Exception as err: print('Request Error:{}'.format(err)) time.sleep(1) continue self.release() if response is None: print('Connection error, reconnect.') # if connect error, frequent requests will casuse # continuous unstable network, therefore wait here # to slow down the request self.wait() continue if response.status_code == 200: try: msg = response.output.text return msg except KeyError: print(response) self.logger.error(str(response.status_code)) time.sleep(1) continue if response.status_code == 429: print('Rate limited') time.sleep(2) continue if response.status_code == 400: msg = 'Output data may contain inappropriate content.' return msg if ('Range of input length should be ' in response.message or # input too long 'Input data may contain inappropriate content.' in response.message): # bad input print(response.message) return '' print(response) max_num_retries += 1 raise RuntimeError(response.message)