import argparse import os.path as osp import random import time from shutil import which from typing import Any from mmengine.config import Config, ConfigDict from mmengine.utils import mkdir_or_exist from opencompass.registry import (ICL_INFERENCERS, ICL_PROMPT_TEMPLATES, ICL_RETRIEVERS, TASKS) from opencompass.tasks.base import BaseTask from opencompass.utils import (build_dataset_from_cfg, build_model_from_cfg, get_infer_output_path, get_logger, task_abbr_from_cfg) @TASKS.register_module(force=(__name__ == '__main__')) # A hack for script run class OpenICLInferTask(BaseTask): """OpenICL Inference Task. This task is used to run the inference process. """ name_prefix = 'OpenICLInfer' log_subdir = 'logs/infer' output_subdir = 'predictions' def __init__(self, cfg: ConfigDict): super().__init__(cfg) run_cfg = self.model_cfgs[0].get('run_cfg', {}) self.num_gpus = run_cfg.get('num_gpus', 0) self.num_procs = run_cfg.get('num_procs', 1) self.logger = get_logger() def get_command(self, cfg_path, template): """Get the command template for the task. Args: cfg_path (str): The path to the config file of the task. template (str): The template which have '{task_cmd}' to format the command. """ script_path = __file__ has_vllm = ('VLLM' in str(self.model_cfgs[0].get('type', ''))) or \ 'VLLM' in str(self.model_cfgs[0].get('llm', {}).get('type', '')) if self.num_gpus > 0 and not has_vllm: port = random.randint(12000, 32000) command = (f'torchrun --master_port={port} ' f'--nproc_per_node {self.num_procs} ' f'{script_path} {cfg_path}') else: python = 'python3' if which('python3') else 'python' command = f'{python} {script_path} {cfg_path}' return template.format(task_cmd=command) def run(self): self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}') for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs): self.max_out_len = model_cfg.get('max_out_len', None) self.batch_size = model_cfg.get('batch_size', None) self.min_out_len = model_cfg.get('min_out_len', None) self.model = build_model_from_cfg(model_cfg) for dataset_cfg in dataset_cfgs: self.model_cfg = model_cfg self.dataset_cfg = dataset_cfg self.infer_cfg = self.dataset_cfg['infer_cfg'] self.dataset = build_dataset_from_cfg(self.dataset_cfg) self.sub_cfg = { 'models': [self.model_cfg], 'datasets': [[self.dataset_cfg]], } out_path = get_infer_output_path( self.model_cfg, self.dataset_cfg, osp.join(self.work_dir, 'predictions')) if osp.exists(out_path): continue self._inference() def _inference(self): self.logger.info( f'Start inferencing {task_abbr_from_cfg(self.sub_cfg)}') assert hasattr(self.infer_cfg, 'ice_template') or hasattr(self.infer_cfg, 'prompt_template'), \ 'Both ice_template and prompt_template cannot be None simultaneously.' # noqa: E501 if hasattr(self.infer_cfg, 'ice_template'): ice_template = ICL_PROMPT_TEMPLATES.build( self.infer_cfg['ice_template']) if hasattr(self.infer_cfg, 'prompt_template'): prompt_template = ICL_PROMPT_TEMPLATES.build( self.infer_cfg['prompt_template']) retriever_cfg = self.infer_cfg['retriever'].copy() retriever_cfg['dataset'] = self.dataset retriever = ICL_RETRIEVERS.build(retriever_cfg) # set inferencer's default value according to model's config' inferencer_cfg = self.infer_cfg['inferencer'] inferencer_cfg['model'] = self.model self._set_default_value(inferencer_cfg, 'max_out_len', self.max_out_len) self._set_default_value(inferencer_cfg, 'min_out_len', self.min_out_len) self._set_default_value(inferencer_cfg, 'batch_size', self.batch_size) inferencer_cfg['max_seq_len'] = self.model_cfg.get('max_seq_len') inferencer = ICL_INFERENCERS.build(inferencer_cfg) out_path = get_infer_output_path( self.model_cfg, self.dataset_cfg, osp.join(self.work_dir, 'predictions')) out_dir, out_file = osp.split(out_path) mkdir_or_exist(out_dir) if hasattr(self.infer_cfg, 'prompt_template') and \ hasattr(self.infer_cfg, 'ice_template'): inferencer.inference(retriever, ice_template=ice_template, prompt_template=prompt_template, output_json_filepath=out_dir, output_json_filename=out_file) elif hasattr(self.infer_cfg, 'prompt_template'): inferencer.inference(retriever, prompt_template=prompt_template, output_json_filepath=out_dir, output_json_filename=out_file) else: inferencer.inference(retriever, ice_template=ice_template, output_json_filepath=out_dir, output_json_filename=out_file) def _set_default_value(self, cfg: ConfigDict, key: str, value: Any): if key not in cfg: cfg[key] = value def parse_args(): parser = argparse.ArgumentParser(description='Model Inferencer') parser.add_argument('config', help='Config file path') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() cfg = Config.fromfile(args.config) start_time = time.time() inferencer = OpenICLInferTask(cfg) inferencer.run() end_time = time.time() get_logger().info(f'time elapsed: {end_time - start_time:.2f}s')