from mmengine.config import read_base from opencompass.models import OpenAI from opencompass.partitioners import NaivePartitioner from opencompass.runners import LocalRunner from opencompass.tasks import OpenICLInferTask with read_base(): from .datasets.collections.chat_medium import datasets from .summarizers.medium import summarizer # GPT4 needs a special humaneval postprocessor from opencompass.datasets.humaneval import humaneval_gpt_postprocess for _dataset in datasets: if _dataset['path'] == 'openai_humaneval': _dataset['eval_cfg']['pred_postprocessor']['type'] = humaneval_gpt_postprocess api_meta_template = dict( round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ], ) models = [ dict(abbr='GPT4', type=OpenAI, path='gpt-4-0613', key='ENV', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=1, max_out_len=2048, max_seq_len=2048, batch_size=8), ] infer = dict( partitioner=dict(type=NaivePartitioner), runner=dict( type=LocalRunner, max_num_workers=4, task=dict(type=OpenICLInferTask)), )