from mmengine.config import read_base from opencompass.models.turbomind_api import TurboMindAPIModel with read_base(): # choose a list of datasets from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets from .datasets.race.race_gen_69ee4f import race_datasets from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets # and output the results in a choosen format from .summarizers.medium import summarizer datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) meta_template = dict( round=[ dict(role='HUMAN', begin='<|User|>:', end='\n'), dict(role='BOT', begin='<|Bot|>:', end='\n', generate=True), ], eos_token_id=103028) models = [ dict( type=TurboMindAPIModel, abbr='internlm-chat-20b-turbomind', path="internlm-chat-20b", api_addr='http://0.0.0.0:23333', max_out_len=100, max_seq_len=2048, batch_size=8, meta_template=meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) ]