# Copyright (c) Alibaba Cloud. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Generation support.""" from typing import List, Tuple, Union import torch from transformers import PreTrainedTokenizer # Types. HistoryType = List[Tuple[str, str]] TokensType = List[int] BatchTokensType = List[List[int]] def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType: for tokens in batch: context_length = len(tokens) if context_length < seq_length: tokens.extend([pad_id] * (seq_length - context_length)) return batch def get_ltor_masks_and_position_ids( data: torch.Tensor, eod_token: int, reset_position_ids: bool, reset_attention_mask: bool, eod_mask_loss: bool, ): """Build masks and position id for left to right model.""" # Extract batch size and sequence length. micro_batch_size, seq_length = data.size() # Attention mask (lower triangular). if reset_attention_mask: att_mask_batch = micro_batch_size else: att_mask_batch = 1 attention_mask = torch.tril( torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)).view(att_mask_batch, 1, seq_length, seq_length) # Loss mask. loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device) if eod_mask_loss: loss_mask[data == eod_token] = 0.0 # Position ids. position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device) position_ids = position_ids.unsqueeze(0).expand_as(data) # We need to clone as the ids will be modified based on batch index. if reset_position_ids: position_ids = position_ids.clone() if reset_position_ids or reset_attention_mask: # Loop through the batches: for b in range(micro_batch_size): # Find indices where EOD token is. eod_index = position_ids[b, data[b] == eod_token] # Detach indices from positions if going to modify positions. if reset_position_ids: eod_index = eod_index.clone() # Loop through EOD indices: prev_index = 0 for j in range(eod_index.size()[0]): i = eod_index[j] # Mask attention loss. if reset_attention_mask: attention_mask[b, 0, (i + 1):, :(i + 1)] = 0 # Reset positions. if reset_position_ids: position_ids[b, (i + 1):] -= i + 1 - prev_index prev_index = i + 1 # Convert attention mask to binary: attention_mask = attention_mask < 0.5 return attention_mask, loss_mask, position_ids def get_batch(context_tokens: torch.LongTensor, eod_id: int): """Generate batch from context tokens.""" # Move to GPU. tokens = context_tokens.contiguous().to(context_tokens.device) # Get the attention mask and position ids. attention_mask, _, position_ids = get_ltor_masks_and_position_ids( tokens, eod_id, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, ) return tokens, attention_mask, position_ids def get_stop_words_ids(chat_format: str, tokenizer: PreTrainedTokenizer): if chat_format == 'raw': stop_words_ids = [tokenizer.encode('Human:'), [tokenizer.eod_id]] elif chat_format == 'chatml': stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]] else: raise NotImplementedError(f'Unknown chat format {chat_format!r}') return stop_words_ids def make_context( tokenizer: PreTrainedTokenizer, query: str, history: List[Tuple[str, str]] = None, system: str = '', max_window_size: int = 6144, chat_format: str = 'chatml', ): if history is None: history = [] if chat_format == 'chatml': im_start, im_end = '<|im_start|>', '<|im_end|>' im_start_tokens = [tokenizer.im_start_id] im_end_tokens = [tokenizer.im_end_id] nl_tokens = tokenizer.encode('\n') def _tokenize_str(role, content): return f'{role}\n{content}', tokenizer.encode( role, allowed_special=set( tokenizer.IMAGE_ST)) + nl_tokens + tokenizer.encode( content, allowed_special=set(tokenizer.IMAGE_ST)) system_text, system_tokens_part = _tokenize_str('system', system) system_tokens = im_start_tokens + system_tokens_part + im_end_tokens raw_text = '' context_tokens = [] for turn_query, turn_response in reversed(history): query_text, query_tokens_part = _tokenize_str('user', turn_query) query_tokens = im_start_tokens + query_tokens_part + im_end_tokens if turn_response is not None: response_text, response_tokens_part = _tokenize_str( 'assistant', turn_response) response_tokens = im_start_tokens + response_tokens_part + im_end_tokens # noqa next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens # noqa prev_chat = ( f'\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}' # noqa ) else: next_context_tokens = nl_tokens + query_tokens + nl_tokens prev_chat = f'\n{im_start}{query_text}{im_end}\n' current_context_size = (len(system_tokens) + len(next_context_tokens) + len(context_tokens)) if current_context_size < max_window_size: context_tokens = next_context_tokens + context_tokens raw_text = prev_chat + raw_text else: break context_tokens = system_tokens + context_tokens raw_text = f'{im_start}{system_text}{im_end}' + raw_text context_tokens += (nl_tokens + im_start_tokens + _tokenize_str('user', query)[1] + im_end_tokens + nl_tokens + im_start_tokens + tokenizer.encode('assistant') + nl_tokens) raw_text += f'\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n' elif chat_format == 'raw': raw_text = query context_tokens = tokenizer.encode(raw_text) else: raise NotImplementedError(f'Unknown chat format {chat_format!r}') return raw_text, context_tokens def _decode_default( tokens: List[int], *, stop_words: List[str], eod_words: List[str], tokenizer: PreTrainedTokenizer, raw_text_len: int, verbose: bool = False, return_end_reason: bool = False, errors: str = 'replace', ): trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:] if verbose: print('\nRaw Generate: ', trim_decode_tokens) end_reason = f'Gen length {len(tokens)}' for stop_word in stop_words: trim_decode_tokens = trim_decode_tokens.replace(stop_word, '').strip() for eod_word in eod_words: if eod_word in trim_decode_tokens: end_reason = f'Gen {eod_word!r}' trim_decode_tokens = trim_decode_tokens.split(eod_word)[0] trim_decode_tokens = trim_decode_tokens.strip() if verbose: print('\nEnd Reason:', end_reason) print('\nGenerate: ', trim_decode_tokens) if return_end_reason: return trim_decode_tokens, end_reason else: return trim_decode_tokens def _decode_chatml(tokens: List[int], *, stop_words: List[str], eod_token_ids: List[int], tokenizer: PreTrainedTokenizer, raw_text_len: int, context_length: int, verbose: bool = False, return_end_reason: bool = False, errors: str = 'replace'): end_reason = f'Gen length {len(tokens)}' eod_token_idx = context_length for eod_token_idx in range(context_length, len(tokens)): if tokens[eod_token_idx] in eod_token_ids: end_reason = f'Gen {tokenizer.decode([tokens[eod_token_idx]])!r}' break trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:] if verbose: print('\nRaw Generate w/o EOD:', tokenizer.decode(tokens, errors=errors)[raw_text_len:]) print('\nRaw Generate:', trim_decode_tokens) print('\nEnd Reason:', end_reason) for stop_word in stop_words: trim_decode_tokens = trim_decode_tokens.replace(stop_word, '').strip() trim_decode_tokens = trim_decode_tokens.strip() if verbose: print('\nGenerate:', trim_decode_tokens) if return_end_reason: return trim_decode_tokens, end_reason else: return trim_decode_tokens def decode_tokens( tokens: Union[torch.LongTensor, TokensType], tokenizer: PreTrainedTokenizer, raw_text_len: int, context_length: int, chat_format: str, verbose: bool = False, return_end_reason: bool = False, errors: str = 'replace', ) -> str: if torch.is_tensor(tokens): tokens = tokens.cpu().numpy().tolist() if chat_format == 'chatml': return _decode_chatml( tokens, stop_words=[], eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id], tokenizer=tokenizer, raw_text_len=raw_text_len, context_length=context_length, verbose=verbose, return_end_reason=return_end_reason, errors=errors, ) elif chat_format == 'raw': return _decode_default( tokens, stop_words=['<|endoftext|>'], eod_words=['<|endoftext|>'], tokenizer=tokenizer, raw_text_len=raw_text_len, verbose=verbose, return_end_reason=return_end_reason, errors=errors, ) else: raise NotImplementedError(f'Unknown chat format {chat_format!r}')