from opencompass.multimodal.models.instructblip import ( InstructBlipScienceQAPromptConstructor, InstructBlipScienceQAPostProcessor, ) # dataloader settings val_pipeline = [ dict(type='mmpretrain.LoadImageFromFile'), dict(type='mmpretrain.ToPIL', to_rgb=True), dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict(type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), dict(type='mmpretrain.PackInputs', algorithm_keys=[ 'question', 'gt_answer', 'choices', 'hint', 'lecture', 'solution', 'has_image' ]) ] dataset = dict(type='mmpretrain.ScienceQA', data_root='./data/scienceqa', split='val', split_file='pid_splits.json', ann_file='problems.json', image_only=True, data_prefix=dict(img_path='val'), pipeline=val_pipeline) instruct_blip_scienceqa_dataloader = dict( batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False)) # model settings instruct_blip_scienceqa_model = dict( type='blip2-vicuna-instruct', prompt_constructor=dict(type=InstructBlipScienceQAPromptConstructor), post_processor=dict(type=InstructBlipScienceQAPostProcessor), freeze_vit=True, low_resource=False, llm_model='/path/to/vicuna-7b/', max_output_txt_len=10, ) # evaluation settings instruct_blip_scienceqa_evaluator = [dict(type='mmpretrain.ScienceQAMetric')] instruct_blip_load_from = '/path/to/instruct_blip_vicuna7b_trimmed.pth'