from opencompass.multimodal.models.llava import LLaVABasePromptConstructor, LLaVABasePostProcessor # dataloader settings val_pipeline = [ dict(type='mmpretrain.LoadImageFromFile'), dict(type='mmpretrain.ToPIL', to_rgb=True), dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict( type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711), ), dict(type='mmpretrain.PackInputs', algorithm_keys=['image_id']), ] dataset = dict(type='mmpretrain.Flickr30kCaption', data_root='data/flickr30k', ann_file='annotations/dataset_flickr30k.json', data_prefix='images', split='val', pipeline=val_pipeline) llava_flickr30k_dataloader = dict( batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False), ) # model settings llava_flickr30k_model = dict( type='llava', model_path='/path/to/llava', is_caption_task=True, prompt_constructor=dict(type=LLaVABasePromptConstructor), post_processor=dict(type=LLaVABasePostProcessor) ) # noqa # evaluation settings llava_flickr30k_evaluator = [ dict( type='mmpretrain.COCOCaption', ann_file='data/flickr30k/annotations/flickr30k_val_gt.json', ) # noqa ]