from opencompass.multimodal.models.visualglm import (VisualGLMBasePostProcessor, VisualGLMMMBenchPromptConstructor) # dataloader settings val_pipeline = [ dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict(type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), dict(type='mmpretrain.PackInputs', algorithm_keys=[ 'question', 'options', 'category', 'l2-category', 'context', 'index', 'options_dict' ]) ] dataset = dict(type='opencompass.MMBenchDataset', data_file='data/mmbench/mmbench_test_20230712.tsv', pipeline=val_pipeline) visualglm_mmbench_dataloader = dict(batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False)) # model settings visualglm_mmbench_model = dict( type='visualglm', pretrained_path='/path/to/visualglm', # or Huggingface repo id prompt_constructor=dict(type=VisualGLMMMBenchPromptConstructor), post_processor=dict(type=VisualGLMBasePostProcessor), gen_kwargs=dict(max_new_tokens=50,num_beams=5,do_sample=False,repetition_penalty=1.0,length_penalty=-1.0) ) # evaluation settings visualglm_mmbench_evaluator = [ dict(type='opencompass.DumpResults', save_path='work_dirs/visualglm-6b-mmbench.xlsx') ]