from mmengine.config import read_base from opencompass.models.turbomind import TurboMindModel with read_base(): # choose a list of datasets from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets # and output the results in a choosen format from .summarizers.medium import summarizer datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) # # config for internlm-7b model internlm_7b = dict( type=TurboMindModel, abbr='internlm-7b-turbomind', path="internlm/internlm-7b", engine_config=dict(session_len=2048, max_batch_size=32, rope_scaling_factor=1.0), gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100), max_out_len=100, max_seq_len=2048, batch_size=32, concurrency=32, run_cfg=dict(num_gpus=1, num_procs=1), ) # config for internlm-20b model internlm_20b = dict( type=TurboMindModel, abbr='internlm-20b-turbomind', path="internlm/internlm-20b", engine_config=dict(session_len=2048, max_batch_size=8, rope_scaling_factor=1.0), gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100), max_out_len=100, max_seq_len=2048, batch_size=8, concurrency=8, run_cfg=dict(num_gpus=1, num_procs=1), ) models = [internlm_20b]