from mmengine.config import read_base from opencompass.models import HuggingFaceCausalLM with read_base(): from .datasets.winogrande.winogrande_gen_a027b6 import winogrande_datasets datasets = [*winogrande_datasets] _meta_template = dict( round=[ dict(role='HUMAN', begin='<|User|>:', end='\n'), dict(role='BOT', begin='<|Bot|>:', end='\n', generate=True), ], ) models=[ dict( type=HuggingFaceCausalLM, abbr='internlm-chat-7b-hf', path="internlm/internlm-chat-7b", tokenizer_path='internlm/internlm-chat-7b', tokenizer_kwargs=dict( padding_side='left', truncation_side='left', use_fast=False, trust_remote_code=True, ), max_out_len=100, max_seq_len=2048, batch_size=8, meta_template=_meta_template, model_kwargs=dict( trust_remote_code=True, device_map='auto', ), run_cfg=dict(num_gpus=1, num_procs=1), ) ] _winogrande_all = [d['abbr'] for d in winogrande_datasets] summarizer = dict( summary_groups=[ {'name': 'winogrande', 'subsets': _winogrande_all}, {'name': 'winogrande_std', 'subsets': _winogrande_all, 'std': True}, ] )