from opencompass.multimodal.models.instructblip import ( InstructBlipVQAPromptConstructor, InstructBlipVQAPostProcessor, ) # dataloader settings val_pipeline = [ dict(type='mmpretrain.LoadImageFromFile'), dict(type='mmpretrain.ToPIL', to_rgb=True), dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict(type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), dict( type='mmpretrain.PackInputs', algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'], meta_keys=['question_id', 'image_id'], ) ] dataset = dict( type='mmpretrain.COCOVQA', data_root='data/okvqa', question_file='annotations/OpenEnded_mscoco_val2014_questions.json', ann_file='annotations/mscoco_val2014_annotations.json', pipeline=val_pipeline, data_prefix='images/val2014', ) instruct_blip_ok_vqa_dataloader = dict(batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False)) # model settings instruct_blip_ok_vqa_model = dict( type='blip2-vicuna-instruct', prompt_constructor=dict(type=InstructBlipVQAPromptConstructor), post_processor=dict(type=InstructBlipVQAPostProcessor), freeze_vit=True, low_resource=False, llm_model='/path/to/vicuna-7b/', max_output_txt_len=10, ) # evaluation settings instruct_blip_ok_vqa_evaluator = [dict(type='mmpretrain.VQAAcc')] instruct_blip_load_from = '/path/to/instruct_blip_vicuna7b_trimmed.pth'