datasets = [ [ dict( abbr='lukaemon_mmlu_college_biology', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( template=dict( A= '{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: A\n', B= '{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: B\n', C= '{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: C\n', D='{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: D\n' ), type= 'opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), prompt_template=dict( ice_token='', template=dict( A= 'The following are multiple choice questions (with answers) about college biology.\n\n{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: A', B= 'The following are multiple choice questions (with answers) about college biology.\n\n{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: B', C= 'The following are multiple choice questions (with answers) about college biology.\n\n{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: C', D='The following are multiple choice questions (with answers) about college biology.\n\n{input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: D' ), type= 'opencompass.openicl.icl_prompt_template.PromptTemplate'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='college_biology', path='./data/mmlu/', reader_cfg=dict( input_columns=[ 'input', 'A', 'B', 'C', 'D', ], output_column='target', train_split='dev'), type='opencompass.datasets.MMLUDataset'), ], ] eval = dict(runner=dict(task=dict())) models = [ dict( abbr='my_api', api_key='', batch_size=8, max_out_len=100, max_seq_len=2048, meta_template=dict(round=[ dict(api_role='HUMAN', role='HUMAN'), dict(api_role='BOT', generate=True, role='BOT'), ]), path='my_api', run_cfg=dict(num_gpus=1, num_procs=1), type='opencompass.models.my_api.MyAPIModel', url='http://127.0.0.1:12345/testing'), ] work_dir = './outputs/default/20240306_164404'