from typing import Dict, List, Optional, Union import torch from opencompass.models.base import BaseModel from opencompass.models.base_api import APITemplateParser from opencompass.utils.logging import get_logger from opencompass.utils.prompt import PromptList PromptType = Union[PromptList, str] class Mixtral(BaseModel): """Mixtral model wrapper https://github.com/open-compass/MixtralKit. Args: path (str): path to the model directory max_seq_len (int): max sequence length max_batch_size (int): max batch size tokenizer_only (bool): whether to load tokenizer only tokenizer_path (str): path to the tokenizer directory meta_template (dict): meta template for the model """ def __init__( self, path: str, max_seq_len: int = 2048, max_batch_size: int = 8, tokenizer_only: bool = False, tokenizer_path: Optional[str] = None, meta_template: Optional[Dict] = None, num_gpus: int = 2, ): # noqa if tokenizer_only: self._load_tokenizer(tokenizer_path=tokenizer_path) else: self._load_model(path=path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, tokenizer_path=tokenizer_path, num_gpus=num_gpus) self.max_seq_len = max_seq_len self.template_parser = APITemplateParser(meta_template) self.logger = get_logger() def _load_model(self, path: str, max_seq_len: int, max_batch_size: int, tokenizer_path: Optional[str] = None, num_gpus: int = 2): from mixtralkit.mixtral import Mixtral self.generator = Mixtral.build(ckpt_dir=path, tokenizer_path=tokenizer_path, max_seq_len=max_seq_len, max_batch_size=max_batch_size, num_gpus=num_gpus) self.tokenizer = self.generator.tokenizer self.model = self.generator.model def _load_tokenizer(self, tokenizer_path: str): from mixtralkit.layers import Tokenizer self.tokenizer = Tokenizer(tokenizer_path) def generate(self, inputs: List[str], max_out_len: int) -> List[str]: prompt_tokens = [] for input in inputs: tokens = self.tokenizer.encode(input, True, False) num_token = min(self.model.params.max_seq_len, len(tokens)) prompt_tokens.append(tokens[-num_token:]) generation_tokens, _ = self.generator.generate( prompt_tokens=prompt_tokens, max_gen_len=max_out_len, temperature=0, ) results = [self.tokenizer.decode(t) for t in generation_tokens] return results def get_ppl(self, inputs: List[str], mask_length: Optional[List[int]] = None) -> List[float]: assert mask_length is None, 'mask_length is not supported' bsz = len(inputs) params = self.model.params assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) # tokenize prompt_tokens = [self.tokenizer.encode(x, True, False) for x in inputs] max_prompt_size = max([len(t) for t in prompt_tokens]) total_len = min(params.max_seq_len, max_prompt_size) tokens = torch.zeros((bsz, total_len)).cuda().long() for k, t in enumerate(prompt_tokens): num_token = min(total_len, len(t)) tokens[k, :num_token] = torch.tensor(t[-num_token:]).long() # forward outputs = self.model.forward(tokens, 0) # compute ppl shift_logits = outputs[..., :-1, :].contiguous().float() shift_labels = tokens[..., 1:].contiguous() shift_logits = shift_logits.view(-1, shift_logits.size(-1)) shift_labels = shift_labels.view(-1) loss_fct = torch.nn.CrossEntropyLoss(reduction='none', ignore_index=0) loss = loss_fct(shift_logits, shift_labels).view(bsz, -1) lens = (tokens != 0).sum(-1).cpu().numpy() ce_loss = loss.sum(-1).cpu().detach().numpy() / lens return ce_loss def get_token_len(self, prompt: str) -> int: return len(self.tokenizer.encode(prompt, True, True))