from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import AnliDataset anli_datasets = [] for _split in ['R1', 'R2', 'R3']: anli_reader_cfg = dict( input_columns=["context", "hypothesis"], output_column="label", ) anli_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ "A": dict(round=[ dict(role="HUMAN", prompt="{context}\n{hypothesis}\What is the relation between the two sentences?"), dict(role="BOT", prompt="Contradiction"), ]), "B": dict(round=[ dict(role="HUMAN", prompt="{context}\n{hypothesis}\What is the relation between the two sentences?"), dict(role="BOT", prompt="Entailment"), ]), "C": dict(round=[ dict(role="HUMAN", prompt="{context}\n{hypothesis}\What is the relation between the two sentences?"), dict(role="BOT", prompt="Neutral"), ]), }, ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer), ) anli_eval_cfg = dict(evaluator=dict(type=AccEvaluator), ) anli_datasets.append( dict( type=AnliDataset, abbr=f"anli-{_split}", path=f"data/anli/anli_v1.0/{_split}/dev.jsonl", reader_cfg=anli_reader_cfg, infer_cfg=anli_infer_cfg, eval_cfg=anli_eval_cfg, ) )