from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import MDLRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import commonsenseqaDataset commonsenseqa_reader_cfg = dict( input_columns=['question', 'A', 'B', 'C', 'D', 'E'], output_column='answerKey', test_split='validation') _ice_template = dict( type=PromptTemplate, template={ ans: dict( begin=[ dict( role="SYSTEM", fallback_role="HUMAN", prompt=f"Answer the following question:"), '' ], round=[ dict(role="HUMAN", prompt="{question}"), dict(role="BOT", prompt=ans_token), ]) for ans, ans_token in [["A", "{A}"], ["B", "{B}"], ["C", "{C}"], ["D", "{D}"], ["E", "{E}"]] }, ice_token='') commonsenseqa_infer_cfg = dict( ice_template=_ice_template, retriever=dict( type=MDLRetriever, ice_num=8, candidate_num=30, select_time=10, seed=1, batch_size=12, ice_template=_ice_template), inferencer=dict(type=PPLInferencer)) commonsenseqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) commonsenseqa_datasets = [ dict( abbr='commonsense_qa', type=commonsenseqaDataset, path='./data/commonsenseqa', reader_cfg=commonsenseqa_reader_cfg, infer_cfg=commonsenseqa_infer_cfg, eval_cfg=commonsenseqa_eval_cfg) ] del _ice_template