from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import CommonsenseQADataset_CN commonsenseqacn_reader_cfg = dict( input_columns=["question", "A", "B", "C", "D", "E"], output_column="answerKey", test_split="validation", ) _ice_template = dict( type=PromptTemplate, template={ ans: dict( begin="", round=[ dict(role="HUMAN", prompt="问题: {question}\n答案: "), dict(role="BOT", prompt=ans_token), ], ) for ans, ans_token in [ ["A", "{A}"], ["B", "{B}"], ["C", "{C}"], ["D", "{D}"], ["E", "{E}"], ] }, ice_token="", ) commonsenseqacn_infer_cfg = dict( prompt_template=_ice_template, retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer), ) commonsenseqacn_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) commonsenseqacn_datasets = [ dict( abbr="commonsenseqa_cn", type=CommonsenseQADataset_CN, path="./data/commonsenseqa_cn/validation.jsonl", reader_cfg=commonsenseqacn_reader_cfg, infer_cfg=commonsenseqacn_infer_cfg, eval_cfg=commonsenseqacn_eval_cfg, ) ]