from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLOnlyInferencer from opencompass.openicl.icl_evaluator import AveragePPLEvaluator from opencompass.datasets import SanitizedMBPPDataset, JsonlDataset mbpp_datasets = [] mbpp_infer_cfg = dict( prompt_template=dict(type=PromptTemplate, template="{text}\n{code}"), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLOnlyInferencer), ) mbpp_eval_cfg = dict(evaluator=dict(type=AveragePPLEvaluator)) for split in ['train', 'test']: mbpp_reader_cfg = dict( input_columns=['text', 'code'], output_column=None, train_split=split, test_split=split, ) mbpp_datasets.append( dict( abbr=f'mbpp-{split}-ppl', type=SanitizedMBPPDataset, path='./data/mbpp/sanitized-mbpp.jsonl', reader_cfg=mbpp_reader_cfg, infer_cfg=mbpp_infer_cfg, eval_cfg=mbpp_eval_cfg) ) mbpp_infer_cfg = dict( prompt_template=dict(type=PromptTemplate, template="{text}"), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLOnlyInferencer), ) mbpp_eval_cfg = dict(evaluator=dict(type=AveragePPLEvaluator)) mbpp_reader_cfg = dict( input_columns=['text'], output_column=None, ) mbpp_datasets.append( dict( abbr=f'mbpp-ref-ppl', type=JsonlDataset, path='/mnt/petrelfs/zhoufengzhe/repos/cscripts/mock-datas/mock_mbpp_20240113.jsonl', reader_cfg=mbpp_reader_cfg, infer_cfg=mbpp_infer_cfg, eval_cfg=mbpp_eval_cfg ) )