from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import AgentInferencer from opencompass.datasets import DS1000Dataset_Interperter, DS1000InterpreterEvaluator ds1000_example = """ In the following task, you should generate code with one assertion to testify the correctness of your code. Example: Problem: How do I get the dimensions of an array? For instance, this is (2, 2): a = np.array([[1,2],[3,4]]) {thought} In Python, Numpy provides a method called `shape` which helps to get the dimensions of an array. {action} PythonInterpreter {action_input} ```python import numpy as np def solution(x): # Convert to np.ndarray x = np.array(x) # Getting the dimensions of the array dimensions = x.shape return dimensions assert solution([[1,2],[3,4]]) == (2, 2) ``` {response}True {thought} By running this code, you can get the dimensions of an array. {finish} ```python import numpy as np def solution(x): # Convert to np.ndarray x = np.array(x) # Getting the dimensions of the array dimensions = x.shape return dimensions ``` """ ds1000_reader_cfg = dict( input_columns=["prompt"], output_column="test_column", train_split="test", test_split="test", ) ds1000_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template="""{prompt}""", ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=AgentInferencer, example=ds1000_example), ) ds1000_eval_cfg = dict( evaluator=dict(type=DS1000InterpreterEvaluator), pred_role="BOT", ) # The DS-1000 dataset can be downloaded from # https://github.com/HKUNLP/DS-1000/blob/main/ds1000_data.zip # Matplotlib cannot fit this setting ds1000_datasets = [ dict( abbr=f"ds1000_{lib}", type=DS1000Dataset_Interperter, # bustm share the same format with AFQMC path="./data/ds1000_data/", libs=f"{lib}", reader_cfg=ds1000_reader_cfg, infer_cfg=ds1000_infer_cfg, eval_cfg=ds1000_eval_cfg, ) for lib in [ "Pandas", "Numpy", # 'Tensorflow', # error using tensorflow, skipped temporarily "Scipy", "Sklearn", "Pytorch", ] ]