from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import BleuEvaluator from opencompass.datasets import GovRepcrsDataset from opencompass.utils.text_postprocessors import general_cn_postprocess govrepcrs_reader_cfg = dict( input_columns='content', output_column='summary', train_split='test', test_split='test') govrepcrs_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict( role='SYSTEM', fallback_role="HUMAN", prompt= 'Please summarize the following English report in English:' ), ], round=[ dict(role='HUMAN', prompt='{content}'), dict(role='BOT', prompt='{summary}'), ])), retriever=dict(type=ZeroRetriever), inferencer=dict( type=GenInferencer, batch_size=4, max_out_len=500, max_seq_len=8192)) govrepcrs_eval_cfg = dict( evaluator=dict(type=BleuEvaluator), pred_role='BOT', pred_postprocessor=dict(type=general_cn_postprocess), dataset_postprocessor=dict(type=general_cn_postprocess)) govrepcrs_datasets = [ dict( type=GovRepcrsDataset, path='./data/govrep/', abbr='GovRepcrs', reader_cfg=govrepcrs_reader_cfg, infer_cfg=govrepcrs_infer_cfg, eval_cfg=govrepcrs_eval_cfg) ]