from mmengine.config import read_base from opencompass.models import LmdeployPytorchModel with read_base(): # choose a list of datasets from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets from .datasets.race.race_gen_69ee4f import race_datasets from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets # and output the results in a choosen format from .summarizers.medium import summarizer datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) meta_template = dict( round=[ dict(role='HUMAN', begin='<|User|>:', end='\n'), dict(role='BOT', begin='<|Bot|>:', end='\n', generate=True), ], eos_token_id=103028) # config for internlm-chat-7b internlm_chat_7b = dict( type=LmdeployPytorchModel, abbr='internlm-chat-7b-pytorch', path='internlm/internlm-chat-7b', engine_config=dict(session_len=2048, max_batch_size=16), gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100), max_out_len=100, max_seq_len=2048, batch_size=16, concurrency=16, meta_template=meta_template, run_cfg=dict(num_gpus=1, num_procs=1), end_str='', ) # config for internlm-chat-20b internlm_chat_20b = dict( type=LmdeployPytorchModel, abbr='internlm-chat-20b-pytorch', path='internlm/internlm-chat-20b', engine_config=dict(session_len=2048, max_batch_size=8), gen_config=dict(top_k=1, top_p=0.8, temperature=1.0, max_new_tokens=100), max_out_len=100, max_seq_len=2048, batch_size=8, concurrency=8, meta_template=meta_template, run_cfg=dict(num_gpus=1, num_procs=1), end_str='', ) models = [internlm_chat_20b]