from opencompass.multimodal.models.llava import LLaVAVQAPromptConstructor, LLaVABasePostProcessor # dataloader settings val_pipeline = [ dict(type='mmpretrain.LoadImageFromFile'), dict(type='mmpretrain.ToPIL', to_rgb=True), dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict( type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711), ), dict( type='mmpretrain.PackInputs', algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'], meta_keys=['question_id', 'image_id'], ) ] dataset = dict( type='mmpretrain.TextVQA', data_root='data/textvqa', ann_file='annotations/TextVQA_0.5.1_val.json', pipeline=val_pipeline, data_prefix='images/train_images', ) llava_textvqa_dataloader = dict( batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False), ) # model settings llava_textvqa_model = dict( type='llava', model_path='/path/to/llava', prompt_constructor=dict(type=LLaVAVQAPromptConstructor), post_processor=dict(type=LLaVABasePostProcessor) ) # noqa # evaluation settings llava_textvqa_evaluator = [dict(type='mmpretrain.VQAAcc')]