from opencompass.multimodal.models.openflamingo import OpenFlamingoVQAPromptConstructor # dataloader settings val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='mmpretrain.ResizeEdge', scale=224, interpolation='bicubic', backend='pillow'), dict(type='CenterCrop', crop_size=(224, 224)), dict( type='mmpretrain.PackInputs', algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'], meta_keys=['question_id', 'image_id'], ) ] dataset = dict(type='mmpretrain.VizWiz', data_root='data/vizwiz/', data_prefix='Images/val', ann_file='Annotations/val.json', pipeline=val_pipeline) openflamingo_vizwiz_dataloader = dict( batch_size=8, num_workers=4, dataset=dataset, sampler=dict(type='DefaultSampler', shuffle=False), collate_fn=dict(type='default_collate'), persistent_workers=True, ) # model settings openflamingo_vizwiz_model = dict( type='openflamingo', data_preprocessor=dict( type='mmpretrain.MultiModalDataPreprocessor', mean=[122.770938, 116.7460125, 104.09373615], std=[68.5005327, 66.6321579, 70.32316305], to_rgb=True, ), tokenizer=dict(type='mmpretrain.LlamaTokenizer', name_or_path='decapoda-research/llama-7b-hf'), vision_encoder=dict( type='mmpretrain.VisionTransformer', arch='l', patch_size=14, pre_norm=True, norm_cfg=dict(type='LN', eps=1e-5), layer_cfgs=dict(act_cfg=dict(type='mmpretrain.QuickGELU')), final_norm=False, out_type='raw', pretrained= # noqa: E251 '/path/to/vision/encoder', # noqa ), lang_encoder=dict( base=dict(type='mmpretrain.AutoModelForCausalLM', name_or_path= 'decapoda-research/llama-7b-hf', local_files_only=True), adapter=dict(type='mmpretrain.FlamingoLMAdapter', vis_hidden_size=1024, cross_attn_every_n_layers=4, use_media_placement_augmentation=False), ), task='vqa', generation_cfg=dict(num_beams=3, max_new_tokens=20, length_penalty=-2.0), prompt_constructor=dict(type=OpenFlamingoVQAPromptConstructor) ) # evaluation settings openflamingo_vizwiz_evaluator = [dict(type='mmpretrain.VQAAcc')] openflamingo_load_from = '/path/to/pretrained/weights' # noqa