# dataloader settings from opencompass.multimodal.models.otter import ( OTTERMMBenchPromptConstructor, OTTERMMBenchPostProcessor) val_pipeline = [ dict(type="mmpretrain.torchvision/Resize", size=(224, 224), interpolation=3), dict(type="mmpretrain.torchvision/ToTensor"), dict( type="mmpretrain.torchvision/Normalize", mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711), ), dict( type="mmpretrain.PackInputs", algorithm_keys=["question", "answer", "options", "category", "l2-category", "context", "index", "options_dict"], ), ] dataset = dict( type="opencompass.MMBenchDataset", data_file="/path/to/mmbench/mmbench_test_20230712.tsv", pipeline=val_pipeline ) otter_9b_mmbench_dataloader = dict( batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type="pseudo_collate"), sampler=dict(type="DefaultSampler", shuffle=False), ) # model settings otter_9b_mmbench_model = dict( type="otter-9b", model_path="/path/to/OTTER-Image-MPT7B/", # noqa load_bit="bf16", prompt_constructor=dict(type=OTTERMMBenchPromptConstructor, model_label='GPT', user_label='User'), post_processor=dict(type=OTTERMMBenchPostProcessor) ) # evaluation settings otter_9b_mmbench_evaluator = [dict(type="opencompass.DumpResults", save_path="work_dirs/otter-9b-mmbench.xlsx")]