from opencompass.multimodal.models.visualglm import (VisualGLMBasePostProcessor, VisualGLMVQAPromptConstructor) # dataloader settings val_pipeline = [ dict(type='mmpretrain.LoadImageFromFile'), dict(type='mmpretrain.ToPIL', to_rgb=True), dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict(type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), dict( type='mmpretrain.PackInputs', algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'], meta_keys=['question_id', 'image_id'], ) ] dataset = dict(type='mmpretrain.VizWiz', data_root='data/vizwiz/', data_prefix='Images/val', ann_file='Annotations/val.json', pipeline=val_pipeline) visualglm_vizwiz_dataloader = dict(batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False)) # model settings visualglm_vizwiz_model = dict( type='visualglm', pretrained_path='/path/to/visualglm', # or Huggingface repo id prompt_constructor=dict(type=VisualGLMVQAPromptConstructor), post_processor=dict(type=VisualGLMBasePostProcessor) ) # evaluation settings visualglm_vizwiz_evaluator = [dict(type='mmpretrain.VQAAcc')]