from mmengine.config import read_base with read_base(): from .groups.cibench import cibench_summary_groups summarizer = dict( dataset_abbrs=[ '######## CIBench Generation ########', # category ['cibench', 'executable'], ['cibench', 'general_correct'], ['cibench', 'vis_sim'], '######## CIBench Template ########', # category 'cibench_template:executable', 'cibench_template:numeric_correct', 'cibench_template:text_score', 'cibench_template:vis_sim', '######## CIBench Template Chinese ########', # category 'cibench_template_cn:executable', 'cibench_template_cn:numeric_correct', 'cibench_template_cn:text_score', 'cibench_template_cn:vis_sim', '######## CIBench Template w/o NLTK ########', # category no text score becase it is only for nltk 'cibench_template_wo_nltk:executable', 'cibench_template_wo_nltk:numeric_correct', 'cibench_template_wo_nltk:vis_sim', '######## CIBench Template Chinese w/o NLTK ########', # category 'cibench_template_cn_wo_nltk:executable', 'cibench_template_cn_wo_nltk:numeric_correct', 'cibench_template_cn_wo_nltk:vis_sim', ], summary_groups=sum( [v for k, v in locals().items() if k.endswith("_summary_groups")], []) )