import ast
import json
import xml.etree.ElementTree as ET
import numpy as np
import pandas as pd
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from ..base import BaseDataset
from .prompts import tspPrompts
def q2text(q, p=tspPrompts): # q is the data for the HP-hard question, p is the prompt
total_cities = q.shape[0]
prompt_text = p['Intro'] + '\n' \
+ p['Initial_question'].format(total_cities=total_cities) + '\n' \
+ p['Output_content'] + '\n' \
+ p['Output_format'] + \
'\n The distances between cities are below: \n'
for i in range(q.shape[0]):
for j in range(q.shape[1]):
if i < j: # only use the upper triangle
this_line = 'The path between City {} and City {} is with distance {}.'.format(i, j, q.iloc[i, j])
prompt_text += this_line + '\n'
return prompt_text
@LOAD_DATASET.register_module(force=True)
class hard_TSP_Dataset(BaseDataset):
@staticmethod
def load(path: str):
raw_data = []
data_path = path
all_data = []
for level in range(10):
for file_num in range(10):
# read np array
df = pd.read_csv(data_path + 'synthesized_data_TSP_level_{}_instance_{}.csv'.format(level, file_num + 1),
header=None,
index_col=False)
# transform df to
all_data.append((level + 1, df))
for (level, q) in all_data:
prompt = q2text(q)
raw_data.append({
'prompt': prompt,
'q': str(level) + '####\n' + json.dumps(q.to_json()),
'level': level
})
dataset = Dataset.from_list(raw_data)
return dataset
@ICL_EVALUATORS.register_module(force=True)
class hard_TSP_Evaluator(BaseEvaluator):
def score(self, predictions, references):
assert len(predictions) == len(references)
result = {'pass': 0, 'fail': 0}
for index, (q, output) in enumerate(zip(references, predictions)):
output_dict = {}
level = int(q.split('####\n')[0])
q = json.loads(q.split('####\n')[-1])
q = pd.DataFrame(eval(q))
output_dict['output'] = output
try:
output_dict['correctness'], _ = self.tspCheck(q, output)
except Exception as e:
print(f'Check failed: {e}')
output_dict['correctness'] = False
output_dict['level'] = level
if output_dict['correctness']:
r = 'pass'
else:
r = 'fail'
result[r] += level
result['score'] = result['pass'] / (result['pass'] + result['fail']) * 100
final_result = {'Weighted Accuracy': result['score']}
return final_result
def parse_xml_to_dict(self, xml_string):
try:
# Parse the XML string
root = ET.fromstring(xml_string)
# Find the 'final_answer' tag
final_answer_element = root.find('final_answer')
# Find the 'reasoning' tag
reasoning_element = root.find('reasoning')
except:
try:
assert '' in xml_string
assert '' in xml_string
assert '' in xml_string
assert '' in xml_string
final_answer_start = xml_string.index('') + len('')
final_answer_end = xml_string.index('')
reasoning_start = xml_string.index('') + len('')
reasoning_end = xml_string.index('')
final_answer_element = xml_string[final_answer_start:final_answer_end]
reasoning_element = xml_string[reasoning_start:reasoning_end]
except:
final_answer_element = ''
reasoning_element = ''
return final_answer_element, reasoning_element
def tspCheck(self, distance_matrix, llm_string):
"""Check if the TSP solution is complete and if the distance matches
the greedy solution.
:param tour_string: String representing the TSP tour in the format "0->1->2->...->N->0"
:param distance_matrix: 2D numpy array representing the distances between cities
:return: Boolean indicating whether the tour is complete and matches the greedy distance
"""
# convert distance_matrix to numpy array
distance_matrix = np.array(distance_matrix)
# Convert the tour string to a list of integers
# print(llm_string)
final_answer_element, reasoning_element = self.parse_xml_to_dict(llm_string)
# convert solution to dictionary
if final_answer_element == '':
return False, ''
elif final_answer_element is None:
return False, ''
else:
if isinstance(final_answer_element, str):
try:
tour_string = ast.literal_eval(final_answer_element)['Path']
if tour_string is None:
return False, ''
except Exception:
try:
tour_string = ast.literal_eval('{' + final_answer_element + '}')['Path']
if tour_string is None:
return False, ''
except Exception:
return False, ''
else:
try:
tour_string = ast.literal_eval(final_answer_element.text)['Path']
if tour_string is None:
return False, ''
except Exception:
return False, ''
try:
tour = list(map(int, tour_string.split('->')))
except Exception:
return False, ''
# we could also prinpt `reasoning_element` to see the reasoning of the answer
# we could also print the final distance of the tour by `final_answer_element['Distance']`
# Check if tour is a cycle
if tour[0] != tour[-1]:
return False, 'The tour must start and end at the same city.'
# Check if all cities are visited
if len(tour) != len(distance_matrix) + 1:
return False, 'The tour does not visit all cities exactly once.'
# Calculate the distance of the provided tour
tour_distance = sum(distance_matrix[tour[i]][tour[i + 1]]
for i in range(len(tour) - 1))
# Find the greedy tour distance for comparison
greedy_tour, greedy_distance = self.greedy_tsp(distance_matrix)
# Check if the provided tour distance is equal to the greedy tour distance
if tour_distance != greedy_distance:
return False, f'The tour distance ({tour_distance}) does not match the greedy solution ({greedy_distance}).'
return True, 'The solution is complete and matches the greedy solution distance.'
def greedy_tsp(self, distance_matrix):
"""Solve the Traveling Salesman Problem using a greedy algorithm.
:param distance_matrix: 2D numpy array where the element at [i, j] is the distance between city i and j
:return: A tuple containing a list of the cities in the order they were visited and the total distance
"""
num_cities = distance_matrix.shape[0]
unvisited_cities = set(range(num_cities))
current_city = np.random.choice(list(unvisited_cities))
tour = [current_city]
total_distance = 0
while unvisited_cities:
unvisited_cities.remove(current_city)
if unvisited_cities:
# Find the nearest unvisited city
distances_to_unvisited = distance_matrix[current_city][list(unvisited_cities)]
nearest_city = list(unvisited_cities)[np.argmin(distances_to_unvisited)]
tour.append(nearest_city)
# Update the total distance
total_distance += distance_matrix[current_city, nearest_city]
current_city = nearest_city
# Return to start
total_distance += distance_matrix[current_city, tour[0]]
tour.append(tour[0])
return tour, total_distance