import json import os.path as osp from datasets import Dataset from opencompass.openicl.icl_evaluator import BaseEvaluator from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET from ..base import BaseDataset from .math_equivalence import is_equiv from .post_process import parse_math_answer @LOAD_DATASET.register_module() class AGIEvalDataset(BaseDataset): @staticmethod def load(path: str, name: str, setting_name: str): from .dataset_loader import load_dataset, load_dataset_as_result_schema assert setting_name in 'zero-shot', 'only support zero-shot setting' dataset_wo_label = load_dataset(name, setting_name, path) dataset_with_label = load_dataset_as_result_schema(name, path) dataset = [] for d1, d2 in zip(dataset_wo_label, dataset_with_label): dataset.append({ 'id': d2.index, 'problem_input': d1['context'], 'label': d2.label, }) dataset = Dataset.from_list(dataset) return dataset @LOAD_DATASET.register_module() class AGIEvalDataset_v2(BaseDataset): @staticmethod def load(path: str, name: str, setting_name: str): assert setting_name in 'zero-shot', 'only support zero-shot setting' filename = osp.join(path, name + '.jsonl') with open(filename, encoding='utf-8') as f: data = [json.loads(line.strip()) for line in f] dataset = [] for item in data: passage = item['passage'] if item['passage'] else '' question = passage + item['question'] options = '\n'.join(item['options']) if item['options'] else '' if item['label']: if isinstance(item['label'], list): label = ''.join(item['label']) else: label = item['label'] else: label = item['answer'] d = {'question': question, 'options': options, 'label': label} dataset.append(d) dataset = Dataset.from_list(dataset) return dataset @ICL_EVALUATORS.register_module() class AGIEvalEvaluator(BaseEvaluator): def score(self, predictions, references): predictions = [parse_math_answer('', pred) for pred in predictions] details = [] cnt = 0 for pred, ref in zip(predictions, references): detail = {'pred': pred, 'answer': ref, 'correct': False} if is_equiv(pred, ref): cnt += 1 detail['correct'] = True details.append(detail) score = cnt / len(predictions) * 100 return {'score': score, 'details': details} @ICL_EVALUATORS.register_module() class AGIEvalEvaluator_mcq(BaseEvaluator): def score(self, predictions, references): if len(predictions) != len(references): return { 'error': 'predictions and references have different ' 'length' } details = [] cnt = 0 for pred, ref in zip(predictions, references): detail = {'pred': pred, 'answer': ref, 'correct': False} if pred == ref: cnt += 1 detail['correct'] = True details.append(detail) score = cnt / len(predictions) * 100 return {'score': score, 'details': details}