datasets=[ dict(abbr='ceval-computer_network', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于计算机网络考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于计算机网络考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于计算机网络考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于计算机网络考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='computer_network', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-operating_system', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于操作系统考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于操作系统考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于操作系统考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于操作系统考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='operating_system', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-computer_architecture', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于计算机组成考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于计算机组成考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于计算机组成考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于计算机组成考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='computer_architecture', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-college_programming', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于大学编程考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于大学编程考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于大学编程考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于大学编程考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='college_programming', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-college_physics', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于大学物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于大学物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于大学物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于大学物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='college_physics', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-college_chemistry', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于大学化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于大学化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于大学化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于大学化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='college_chemistry', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-advanced_mathematics', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于高等数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于高等数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于高等数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于高等数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='advanced_mathematics', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-probability_and_statistics', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于概率统计考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于概率统计考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于概率统计考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于概率统计考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='probability_and_statistics', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-discrete_mathematics', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于离散数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于离散数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于离散数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于离散数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='discrete_mathematics', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-electrical_engineer', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于注册电气工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于注册电气工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于注册电气工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于注册电气工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='electrical_engineer', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-metrology_engineer', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于注册计量师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于注册计量师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于注册计量师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于注册计量师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='metrology_engineer', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-high_school_mathematics', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于高中数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于高中数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于高中数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于高中数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='high_school_mathematics', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-high_school_physics', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于高中物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于高中物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于高中物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于高中物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='high_school_physics', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-high_school_chemistry', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于高中化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于高中化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于高中化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于高中化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='high_school_chemistry', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-high_school_biology', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于高中生物考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于高中生物考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于高中生物考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于高中生物考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='high_school_biology', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-middle_school_mathematics', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于初中数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于初中数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于初中数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于初中数学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='middle_school_mathematics', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-middle_school_biology', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于初中生物考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于初中生物考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于初中生物考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于初中生物考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='middle_school_biology', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-middle_school_physics', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于初中物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于初中物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于初中物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于初中物理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='middle_school_physics', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-middle_school_chemistry', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于初中化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于初中化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于初中化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于初中化学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='middle_school_chemistry', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-veterinary_medicine', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于兽医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于兽医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于兽医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于兽医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='veterinary_medicine', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-college_economics', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于大学经济学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于大学经济学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于大学经济学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于大学经济学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='college_economics', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-business_administration', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于工商管理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于工商管理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于工商管理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于工商管理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='business_administration', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-marxism', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于马克思主义基本原理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于马克思主义基本原理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于马克思主义基本原理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于马克思主义基本原理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='marxism', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-mao_zedong_thought', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于毛泽东思想和中国特色社会主义理论体系概论考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于毛泽东思想和中国特色社会主义理论体系概论考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于毛泽东思想和中国特色社会主义理论体系概论考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于毛泽东思想和中国特色社会主义理论体系概论考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='mao_zedong_thought', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-education_science', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于教育学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于教育学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于教育学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于教育学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='education_science', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-teacher_qualification', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于教师资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于教师资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于教师资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于教师资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='teacher_qualification', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-high_school_politics', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于高中政治考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于高中政治考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于高中政治考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于高中政治考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='high_school_politics', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-high_school_geography', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于高中地理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于高中地理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于高中地理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于高中地理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='high_school_geography', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-middle_school_politics', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于初中政治考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于初中政治考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于初中政治考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于初中政治考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='middle_school_politics', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-middle_school_geography', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于初中地理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于初中地理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于初中地理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于初中地理考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='middle_school_geography', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-modern_chinese_history', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于近代史纲要考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于近代史纲要考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于近代史纲要考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于近代史纲要考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='modern_chinese_history', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-ideological_and_moral_cultivation', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于思想道德修养与法律基础考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于思想道德修养与法律基础考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于思想道德修养与法律基础考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于思想道德修养与法律基础考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='ideological_and_moral_cultivation', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-logic', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于逻辑学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于逻辑学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于逻辑学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于逻辑学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='logic', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-law', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于法学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于法学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于法学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于法学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='law', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-chinese_language_and_literature', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于中国语言文学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于中国语言文学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于中国语言文学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于中国语言文学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='chinese_language_and_literature', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-art_studies', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于艺术学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于艺术学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于艺术学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于艺术学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='art_studies', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-professional_tour_guide', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于导游资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于导游资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于导游资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于导游资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='professional_tour_guide', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-legal_professional', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于法律职业资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于法律职业资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于法律职业资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于法律职业资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='legal_professional', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-high_school_chinese', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于高中语文考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于高中语文考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于高中语文考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于高中语文考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='high_school_chinese', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-high_school_history', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于高中历史考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于高中历史考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于高中历史考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于高中历史考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='high_school_history', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-middle_school_history', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于初中历史考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于初中历史考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于初中历史考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于初中历史考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='middle_school_history', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-civil_servant', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于公务员考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于公务员考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于公务员考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于公务员考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='civil_servant', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-sports_science', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于体育学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于体育学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于体育学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于体育学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='sports_science', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-plant_protection', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于植物保护考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于植物保护考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于植物保护考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于植物保护考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='plant_protection', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-basic_medicine', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于基础医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于基础医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于基础医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于基础医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='basic_medicine', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-clinical_medicine', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于临床医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于临床医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于临床医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于临床医学考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='clinical_medicine', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-urban_and_rural_planner', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于注册城乡规划师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于注册城乡规划师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于注册城乡规划师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于注册城乡规划师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='urban_and_rural_planner', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-accountant', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于注册会计师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于注册会计师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于注册会计师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于注册会计师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='accountant', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-fire_engineer', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于注册消防工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于注册消防工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于注册消防工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于注册消防工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='fire_engineer', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-environmental_impact_assessment_engineer', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于环境影响评价工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于环境影响评价工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于环境影响评价工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于环境影响评价工程师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='environmental_impact_assessment_engineer', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-tax_accountant', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于税务师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于税务师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于税务师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于税务师考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='tax_accountant', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), dict(abbr='ceval-physician', eval_cfg=dict( evaluator=dict( type='opencompass.openicl.icl_evaluator.AccEvaluator')), infer_cfg=dict( ice_template=dict( ice_token='', template=dict( A=dict( begin='', round=[ dict(prompt='以下是中国关于医师资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='A', role='BOT'), ]), B=dict( begin='', round=[ dict(prompt='以下是中国关于医师资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='B', role='BOT'), ]), C=dict( begin='', round=[ dict(prompt='以下是中国关于医师资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='C', role='BOT'), ]), D=dict( begin='', round=[ dict(prompt='以下是中国关于医师资格考试的单项选择题,请选出其中的正确答案。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案: ', role='HUMAN'), dict(prompt='D', role='BOT'), ])), type='opencompass.openicl.icl_prompt_template.PromptTemplate'), inferencer=dict( type='opencompass.openicl.icl_inferencer.PPLInferencer'), retriever=dict( fix_id_list=[ 0, 1, 2, 3, 4, ], type='opencompass.openicl.icl_retriever.FixKRetriever')), name='physician', path='./data/ceval/formal_ceval', reader_cfg=dict( input_columns=[ 'question', 'A', 'B', 'C', 'D', ], output_column='answer', test_split='val', train_split='dev'), type='opencompass.datasets.CEvalDataset'), ] models=[ dict(abbr='my_api', api_key='', batch_size=8, max_out_len=100, max_seq_len=2048, meta_template=dict( round=[ dict(api_role='HUMAN', role='HUMAN'), dict(api_role='BOT', generate=True, role='BOT'), ]), path='my_api', run_cfg=dict( num_gpus=1, num_procs=1), type='opencompass.models.my_api.MyAPIModel', url='http://0.0.0.0:12345/testing'), ] summarizer=dict( summary_groups=[ dict(name='agieval-chinese', subsets=[ 'agieval-gaokao-chinese', 'agieval-gaokao-english', 'agieval-gaokao-geography', 'agieval-gaokao-history', 'agieval-gaokao-biology', 'agieval-gaokao-chemistry', 'agieval-gaokao-physics', 'agieval-gaokao-mathqa', 'agieval-logiqa-zh', 'agieval-jec-qa-kd', 'agieval-jec-qa-ca', 'agieval-gaokao-mathcloze', ]), dict(name='agieval-english', subsets=[ 'agieval-lsat-ar', 'agieval-lsat-lr', 'agieval-lsat-rc', 'agieval-logiqa-en', 'agieval-sat-math', 'agieval-sat-en', 'agieval-sat-en-without-passage', 'agieval-aqua-rat', 'agieval-math', ]), dict(name='agieval-gaokao', subsets=[ 'agieval-gaokao-chinese', 'agieval-gaokao-english', 'agieval-gaokao-geography', 'agieval-gaokao-history', 'agieval-gaokao-biology', 'agieval-gaokao-chemistry', 'agieval-gaokao-physics', 'agieval-gaokao-mathqa', 'agieval-gaokao-mathcloze', ]), dict(name='agieval', subsets=[ 'agieval-gaokao-chinese', 'agieval-gaokao-english', 'agieval-gaokao-geography', 'agieval-gaokao-history', 'agieval-gaokao-biology', 'agieval-gaokao-chemistry', 'agieval-gaokao-physics', 'agieval-gaokao-mathqa', 'agieval-logiqa-zh', 'agieval-lsat-ar', 'agieval-lsat-lr', 'agieval-lsat-rc', 'agieval-logiqa-en', 'agieval-sat-math', 'agieval-sat-en', 'agieval-sat-en-without-passage', 'agieval-aqua-rat', 'agieval-jec-qa-kd', 'agieval-jec-qa-ca', 'agieval-gaokao-mathcloze', 'agieval-math', ]), dict(name='mmlu-humanities', subsets=[ 'lukaemon_mmlu_formal_logic', 'lukaemon_mmlu_high_school_european_history', 'lukaemon_mmlu_high_school_us_history', 'lukaemon_mmlu_high_school_world_history', 'lukaemon_mmlu_international_law', 'lukaemon_mmlu_jurisprudence', 'lukaemon_mmlu_logical_fallacies', 'lukaemon_mmlu_moral_disputes', 'lukaemon_mmlu_moral_scenarios', 'lukaemon_mmlu_philosophy', 'lukaemon_mmlu_prehistory', 'lukaemon_mmlu_professional_law', 'lukaemon_mmlu_world_religions', ]), dict(name='mmlu-stem', subsets=[ 'lukaemon_mmlu_abstract_algebra', 'lukaemon_mmlu_anatomy', 'lukaemon_mmlu_astronomy', 'lukaemon_mmlu_college_biology', 'lukaemon_mmlu_college_chemistry', 'lukaemon_mmlu_college_computer_science', 'lukaemon_mmlu_college_mathematics', 'lukaemon_mmlu_college_physics', 'lukaemon_mmlu_computer_security', 'lukaemon_mmlu_conceptual_physics', 'lukaemon_mmlu_electrical_engineering', 'lukaemon_mmlu_elementary_mathematics', 'lukaemon_mmlu_high_school_biology', 'lukaemon_mmlu_high_school_chemistry', 'lukaemon_mmlu_high_school_computer_science', 'lukaemon_mmlu_high_school_mathematics', 'lukaemon_mmlu_high_school_physics', 'lukaemon_mmlu_high_school_statistics', 'lukaemon_mmlu_machine_learning', ]), dict(name='mmlu-social-science', subsets=[ 'lukaemon_mmlu_econometrics', 'lukaemon_mmlu_high_school_geography', 'lukaemon_mmlu_high_school_government_and_politics', 'lukaemon_mmlu_high_school_macroeconomics', 'lukaemon_mmlu_high_school_microeconomics', 'lukaemon_mmlu_high_school_psychology', 'lukaemon_mmlu_human_sexuality', 'lukaemon_mmlu_professional_psychology', 'lukaemon_mmlu_public_relations', 'lukaemon_mmlu_security_studies', 'lukaemon_mmlu_sociology', 'lukaemon_mmlu_us_foreign_policy', ]), dict(name='mmlu-other', subsets=[ 'lukaemon_mmlu_business_ethics', 'lukaemon_mmlu_clinical_knowledge', 'lukaemon_mmlu_college_medicine', 'lukaemon_mmlu_global_facts', 'lukaemon_mmlu_human_aging', 'lukaemon_mmlu_management', 'lukaemon_mmlu_marketing', 'lukaemon_mmlu_medical_genetics', 'lukaemon_mmlu_miscellaneous', 'lukaemon_mmlu_nutrition', 'lukaemon_mmlu_professional_accounting', 'lukaemon_mmlu_professional_medicine', 'lukaemon_mmlu_virology', ]), dict(name='mmlu', subsets=[ 'lukaemon_mmlu_formal_logic', 'lukaemon_mmlu_high_school_european_history', 'lukaemon_mmlu_high_school_us_history', 'lukaemon_mmlu_high_school_world_history', 'lukaemon_mmlu_international_law', 'lukaemon_mmlu_jurisprudence', 'lukaemon_mmlu_logical_fallacies', 'lukaemon_mmlu_moral_disputes', 'lukaemon_mmlu_moral_scenarios', 'lukaemon_mmlu_philosophy', 'lukaemon_mmlu_prehistory', 'lukaemon_mmlu_professional_law', 'lukaemon_mmlu_world_religions', 'lukaemon_mmlu_abstract_algebra', 'lukaemon_mmlu_anatomy', 'lukaemon_mmlu_astronomy', 'lukaemon_mmlu_college_biology', 'lukaemon_mmlu_college_chemistry', 'lukaemon_mmlu_college_computer_science', 'lukaemon_mmlu_college_mathematics', 'lukaemon_mmlu_college_physics', 'lukaemon_mmlu_computer_security', 'lukaemon_mmlu_conceptual_physics', 'lukaemon_mmlu_electrical_engineering', 'lukaemon_mmlu_elementary_mathematics', 'lukaemon_mmlu_high_school_biology', 'lukaemon_mmlu_high_school_chemistry', 'lukaemon_mmlu_high_school_computer_science', 'lukaemon_mmlu_high_school_mathematics', 'lukaemon_mmlu_high_school_physics', 'lukaemon_mmlu_high_school_statistics', 'lukaemon_mmlu_machine_learning', 'lukaemon_mmlu_econometrics', 'lukaemon_mmlu_high_school_geography', 'lukaemon_mmlu_high_school_government_and_politics', 'lukaemon_mmlu_high_school_macroeconomics', 'lukaemon_mmlu_high_school_microeconomics', 'lukaemon_mmlu_high_school_psychology', 'lukaemon_mmlu_human_sexuality', 'lukaemon_mmlu_professional_psychology', 'lukaemon_mmlu_public_relations', 'lukaemon_mmlu_security_studies', 'lukaemon_mmlu_sociology', 'lukaemon_mmlu_us_foreign_policy', 'lukaemon_mmlu_business_ethics', 'lukaemon_mmlu_clinical_knowledge', 'lukaemon_mmlu_college_medicine', 'lukaemon_mmlu_global_facts', 'lukaemon_mmlu_human_aging', 'lukaemon_mmlu_management', 'lukaemon_mmlu_marketing', 'lukaemon_mmlu_medical_genetics', 'lukaemon_mmlu_miscellaneous', 'lukaemon_mmlu_nutrition', 'lukaemon_mmlu_professional_accounting', 'lukaemon_mmlu_professional_medicine', 'lukaemon_mmlu_virology', ]), dict(name='mmlu-weighted', subsets=[ 'lukaemon_mmlu_formal_logic', 'lukaemon_mmlu_high_school_european_history', 'lukaemon_mmlu_high_school_us_history', 'lukaemon_mmlu_high_school_world_history', 'lukaemon_mmlu_international_law', 'lukaemon_mmlu_jurisprudence', 'lukaemon_mmlu_logical_fallacies', 'lukaemon_mmlu_moral_disputes', 'lukaemon_mmlu_moral_scenarios', 'lukaemon_mmlu_philosophy', 'lukaemon_mmlu_prehistory', 'lukaemon_mmlu_professional_law', 'lukaemon_mmlu_world_religions', 'lukaemon_mmlu_abstract_algebra', 'lukaemon_mmlu_anatomy', 'lukaemon_mmlu_astronomy', 'lukaemon_mmlu_college_biology', 'lukaemon_mmlu_college_chemistry', 'lukaemon_mmlu_college_computer_science', 'lukaemon_mmlu_college_mathematics', 'lukaemon_mmlu_college_physics', 'lukaemon_mmlu_computer_security', 'lukaemon_mmlu_conceptual_physics', 'lukaemon_mmlu_electrical_engineering', 'lukaemon_mmlu_elementary_mathematics', 'lukaemon_mmlu_high_school_biology', 'lukaemon_mmlu_high_school_chemistry', 'lukaemon_mmlu_high_school_computer_science', 'lukaemon_mmlu_high_school_mathematics', 'lukaemon_mmlu_high_school_physics', 'lukaemon_mmlu_high_school_statistics', 'lukaemon_mmlu_machine_learning', 'lukaemon_mmlu_econometrics', 'lukaemon_mmlu_high_school_geography', 'lukaemon_mmlu_high_school_government_and_politics', 'lukaemon_mmlu_high_school_macroeconomics', 'lukaemon_mmlu_high_school_microeconomics', 'lukaemon_mmlu_high_school_psychology', 'lukaemon_mmlu_human_sexuality', 'lukaemon_mmlu_professional_psychology', 'lukaemon_mmlu_public_relations', 'lukaemon_mmlu_security_studies', 'lukaemon_mmlu_sociology', 'lukaemon_mmlu_us_foreign_policy', 'lukaemon_mmlu_business_ethics', 'lukaemon_mmlu_clinical_knowledge', 'lukaemon_mmlu_college_medicine', 'lukaemon_mmlu_global_facts', 'lukaemon_mmlu_human_aging', 'lukaemon_mmlu_management', 'lukaemon_mmlu_marketing', 'lukaemon_mmlu_medical_genetics', 'lukaemon_mmlu_miscellaneous', 'lukaemon_mmlu_nutrition', 'lukaemon_mmlu_professional_accounting', 'lukaemon_mmlu_professional_medicine', 'lukaemon_mmlu_virology', ], weights=dict( lukaemon_mmlu_abstract_algebra=100, lukaemon_mmlu_anatomy=135, lukaemon_mmlu_astronomy=152, lukaemon_mmlu_business_ethics=100, lukaemon_mmlu_clinical_knowledge=265, lukaemon_mmlu_college_biology=144, lukaemon_mmlu_college_chemistry=100, lukaemon_mmlu_college_computer_science=100, lukaemon_mmlu_college_mathematics=100, lukaemon_mmlu_college_medicine=173, lukaemon_mmlu_college_physics=102, lukaemon_mmlu_computer_security=100, lukaemon_mmlu_conceptual_physics=235, lukaemon_mmlu_econometrics=114, lukaemon_mmlu_electrical_engineering=145, lukaemon_mmlu_elementary_mathematics=378, lukaemon_mmlu_formal_logic=126, lukaemon_mmlu_global_facts=100, lukaemon_mmlu_high_school_biology=310, lukaemon_mmlu_high_school_chemistry=203, lukaemon_mmlu_high_school_computer_science=100, lukaemon_mmlu_high_school_european_history=165, lukaemon_mmlu_high_school_geography=198, lukaemon_mmlu_high_school_government_and_politics=193, lukaemon_mmlu_high_school_macroeconomics=390, lukaemon_mmlu_high_school_mathematics=270, lukaemon_mmlu_high_school_microeconomics=238, lukaemon_mmlu_high_school_physics=151, lukaemon_mmlu_high_school_psychology=545, lukaemon_mmlu_high_school_statistics=216, lukaemon_mmlu_high_school_us_history=204, lukaemon_mmlu_high_school_world_history=237, lukaemon_mmlu_human_aging=223, lukaemon_mmlu_human_sexuality=131, lukaemon_mmlu_international_law=121, lukaemon_mmlu_jurisprudence=108, lukaemon_mmlu_logical_fallacies=163, lukaemon_mmlu_machine_learning=112, lukaemon_mmlu_management=103, lukaemon_mmlu_marketing=234, lukaemon_mmlu_medical_genetics=100, lukaemon_mmlu_miscellaneous=783, lukaemon_mmlu_moral_disputes=346, lukaemon_mmlu_moral_scenarios=895, lukaemon_mmlu_nutrition=306, lukaemon_mmlu_philosophy=311, lukaemon_mmlu_prehistory=324, lukaemon_mmlu_professional_accounting=282, lukaemon_mmlu_professional_law=1534, lukaemon_mmlu_professional_medicine=272, lukaemon_mmlu_professional_psychology=612, lukaemon_mmlu_public_relations=110, lukaemon_mmlu_security_studies=245, lukaemon_mmlu_sociology=201, lukaemon_mmlu_us_foreign_policy=100, lukaemon_mmlu_virology=166, lukaemon_mmlu_world_religions=171)), dict(name='cmmlu-humanities', subsets=[ 'cmmlu-arts', 'cmmlu-chinese_history', 'cmmlu-chinese_literature', 'cmmlu-college_law', 'cmmlu-global_facts', 'cmmlu-international_law', 'cmmlu-jurisprudence', 'cmmlu-logical', 'cmmlu-marxist_theory', 'cmmlu-philosophy', 'cmmlu-professional_law', 'cmmlu-world_history', 'cmmlu-world_religions', ]), dict(name='cmmlu-stem', subsets=[ 'cmmlu-anatomy', 'cmmlu-astronomy', 'cmmlu-college_actuarial_science', 'cmmlu-college_engineering_hydrology', 'cmmlu-college_mathematics', 'cmmlu-college_medical_statistics', 'cmmlu-computer_science', 'cmmlu-conceptual_physics', 'cmmlu-electrical_engineering', 'cmmlu-elementary_mathematics', 'cmmlu-genetics', 'cmmlu-high_school_biology', 'cmmlu-high_school_chemistry', 'cmmlu-high_school_mathematics', 'cmmlu-high_school_physics', 'cmmlu-machine_learning', 'cmmlu-virology', ]), dict(name='cmmlu-social-science', subsets=[ 'cmmlu-ancient_chinese', 'cmmlu-business_ethics', 'cmmlu-chinese_civil_service_exam', 'cmmlu-chinese_food_culture', 'cmmlu-chinese_foreign_policy', 'cmmlu-chinese_teacher_qualification', 'cmmlu-college_education', 'cmmlu-economics', 'cmmlu-education', 'cmmlu-elementary_chinese', 'cmmlu-ethnology', 'cmmlu-high_school_geography', 'cmmlu-high_school_politics', 'cmmlu-journalism', 'cmmlu-management', 'cmmlu-marketing', 'cmmlu-modern_chinese', 'cmmlu-professional_accounting', 'cmmlu-professional_psychology', 'cmmlu-public_relations', 'cmmlu-security_study', 'cmmlu-sociology', ]), dict(name='cmmlu-other', subsets=[ 'cmmlu-agronomy', 'cmmlu-chinese_driving_rule', 'cmmlu-clinical_knowledge', 'cmmlu-college_medicine', 'cmmlu-computer_security', 'cmmlu-construction_project_management', 'cmmlu-elementary_commonsense', 'cmmlu-elementary_information_and_technology', 'cmmlu-food_science', 'cmmlu-human_sexuality', 'cmmlu-legal_and_moral_basis', 'cmmlu-nutrition', 'cmmlu-professional_medicine', 'cmmlu-sports_science', 'cmmlu-traditional_chinese_medicine', ]), dict(name='cmmlu-china-specific', subsets=[ 'cmmlu-ancient_chinese', 'cmmlu-chinese_civil_service_exam', 'cmmlu-chinese_driving_rule', 'cmmlu-chinese_food_culture', 'cmmlu-chinese_foreign_policy', 'cmmlu-chinese_history', 'cmmlu-chinese_literature', 'cmmlu-chinese_teacher_qualification', 'cmmlu-construction_project_management', 'cmmlu-elementary_chinese', 'cmmlu-elementary_commonsense', 'cmmlu-ethnology', 'cmmlu-high_school_politics', 'cmmlu-modern_chinese', 'cmmlu-traditional_chinese_medicine', ]), dict(name='cmmlu', subsets=[ 'cmmlu-agronomy', 'cmmlu-anatomy', 'cmmlu-ancient_chinese', 'cmmlu-arts', 'cmmlu-astronomy', 'cmmlu-business_ethics', 'cmmlu-chinese_civil_service_exam', 'cmmlu-chinese_driving_rule', 'cmmlu-chinese_food_culture', 'cmmlu-chinese_foreign_policy', 'cmmlu-chinese_history', 'cmmlu-chinese_literature', 'cmmlu-chinese_teacher_qualification', 'cmmlu-college_actuarial_science', 'cmmlu-college_education', 'cmmlu-college_engineering_hydrology', 'cmmlu-college_law', 'cmmlu-college_mathematics', 'cmmlu-college_medical_statistics', 'cmmlu-clinical_knowledge', 'cmmlu-college_medicine', 'cmmlu-computer_science', 'cmmlu-computer_security', 'cmmlu-conceptual_physics', 'cmmlu-construction_project_management', 'cmmlu-economics', 'cmmlu-education', 'cmmlu-elementary_chinese', 'cmmlu-elementary_commonsense', 'cmmlu-elementary_information_and_technology', 'cmmlu-electrical_engineering', 'cmmlu-elementary_mathematics', 'cmmlu-ethnology', 'cmmlu-food_science', 'cmmlu-genetics', 'cmmlu-global_facts', 'cmmlu-high_school_biology', 'cmmlu-high_school_chemistry', 'cmmlu-high_school_geography', 'cmmlu-high_school_mathematics', 'cmmlu-high_school_physics', 'cmmlu-high_school_politics', 'cmmlu-human_sexuality', 'cmmlu-international_law', 'cmmlu-journalism', 'cmmlu-jurisprudence', 'cmmlu-legal_and_moral_basis', 'cmmlu-logical', 'cmmlu-machine_learning', 'cmmlu-management', 'cmmlu-marketing', 'cmmlu-marxist_theory', 'cmmlu-modern_chinese', 'cmmlu-nutrition', 'cmmlu-philosophy', 'cmmlu-professional_accounting', 'cmmlu-professional_law', 'cmmlu-professional_medicine', 'cmmlu-professional_psychology', 'cmmlu-public_relations', 'cmmlu-security_study', 'cmmlu-sociology', 'cmmlu-sports_science', 'cmmlu-traditional_chinese_medicine', 'cmmlu-virology', 'cmmlu-world_history', 'cmmlu-world_religions', ]), dict(name='ceval-stem', subsets=[ 'ceval-computer_network', 'ceval-operating_system', 'ceval-computer_architecture', 'ceval-college_programming', 'ceval-college_physics', 'ceval-college_chemistry', 'ceval-advanced_mathematics', 'ceval-probability_and_statistics', 'ceval-discrete_mathematics', 'ceval-electrical_engineer', 'ceval-metrology_engineer', 'ceval-high_school_mathematics', 'ceval-high_school_physics', 'ceval-high_school_chemistry', 'ceval-high_school_biology', 'ceval-middle_school_mathematics', 'ceval-middle_school_biology', 'ceval-middle_school_physics', 'ceval-middle_school_chemistry', 'ceval-veterinary_medicine', ]), dict(name='ceval-social-science', subsets=[ 'ceval-college_economics', 'ceval-business_administration', 'ceval-marxism', 'ceval-mao_zedong_thought', 'ceval-education_science', 'ceval-teacher_qualification', 'ceval-high_school_politics', 'ceval-high_school_geography', 'ceval-middle_school_politics', 'ceval-middle_school_geography', ]), dict(name='ceval-humanities', subsets=[ 'ceval-modern_chinese_history', 'ceval-ideological_and_moral_cultivation', 'ceval-logic', 'ceval-law', 'ceval-chinese_language_and_literature', 'ceval-art_studies', 'ceval-professional_tour_guide', 'ceval-legal_professional', 'ceval-high_school_chinese', 'ceval-high_school_history', 'ceval-middle_school_history', ]), dict(name='ceval-other', subsets=[ 'ceval-civil_servant', 'ceval-sports_science', 'ceval-plant_protection', 'ceval-basic_medicine', 'ceval-clinical_medicine', 'ceval-urban_and_rural_planner', 'ceval-accountant', 'ceval-fire_engineer', 'ceval-environmental_impact_assessment_engineer', 'ceval-tax_accountant', 'ceval-physician', ]), dict(name='ceval-hard', subsets=[ 'ceval-advanced_mathematics', 'ceval-discrete_mathematics', 'ceval-probability_and_statistics', 'ceval-college_chemistry', 'ceval-college_physics', 'ceval-high_school_mathematics', 'ceval-high_school_chemistry', 'ceval-high_school_physics', ]), dict(name='ceval', subsets=[ 'ceval-computer_network', 'ceval-operating_system', 'ceval-computer_architecture', 'ceval-college_programming', 'ceval-college_physics', 'ceval-college_chemistry', 'ceval-advanced_mathematics', 'ceval-probability_and_statistics', 'ceval-discrete_mathematics', 'ceval-electrical_engineer', 'ceval-metrology_engineer', 'ceval-high_school_mathematics', 'ceval-high_school_physics', 'ceval-high_school_chemistry', 'ceval-high_school_biology', 'ceval-middle_school_mathematics', 'ceval-middle_school_biology', 'ceval-middle_school_physics', 'ceval-middle_school_chemistry', 'ceval-veterinary_medicine', 'ceval-college_economics', 'ceval-business_administration', 'ceval-marxism', 'ceval-mao_zedong_thought', 'ceval-education_science', 'ceval-teacher_qualification', 'ceval-high_school_politics', 'ceval-high_school_geography', 'ceval-middle_school_politics', 'ceval-middle_school_geography', 'ceval-modern_chinese_history', 'ceval-ideological_and_moral_cultivation', 'ceval-logic', 'ceval-law', 'ceval-chinese_language_and_literature', 'ceval-art_studies', 'ceval-professional_tour_guide', 'ceval-legal_professional', 'ceval-high_school_chinese', 'ceval-high_school_history', 'ceval-middle_school_history', 'ceval-civil_servant', 'ceval-sports_science', 'ceval-plant_protection', 'ceval-basic_medicine', 'ceval-clinical_medicine', 'ceval-urban_and_rural_planner', 'ceval-accountant', 'ceval-fire_engineer', 'ceval-environmental_impact_assessment_engineer', 'ceval-tax_accountant', 'ceval-physician', ]), dict(name='ceval-test-stem', subsets=[ 'ceval-test-computer_network', 'ceval-test-operating_system', 'ceval-test-computer_architecture', 'ceval-test-college_programming', 'ceval-test-college_physics', 'ceval-test-college_chemistry', 'ceval-test-advanced_mathematics', 'ceval-test-probability_and_statistics', 'ceval-test-discrete_mathematics', 'ceval-test-electrical_engineer', 'ceval-test-metrology_engineer', 'ceval-test-high_school_mathematics', 'ceval-test-high_school_physics', 'ceval-test-high_school_chemistry', 'ceval-test-high_school_biology', 'ceval-test-middle_school_mathematics', 'ceval-test-middle_school_biology', 'ceval-test-middle_school_physics', 'ceval-test-middle_school_chemistry', 'ceval-test-veterinary_medicine', ]), dict(name='ceval-test-social-science', subsets=[ 'ceval-test-college_economics', 'ceval-test-business_administration', 'ceval-test-marxism', 'ceval-test-mao_zedong_thought', 'ceval-test-education_science', 'ceval-test-teacher_qualification', 'ceval-test-high_school_politics', 'ceval-test-high_school_geography', 'ceval-test-middle_school_politics', 'ceval-test-middle_school_geography', ]), dict(name='ceval-test-humanities', subsets=[ 'ceval-test-modern_chinese_history', 'ceval-test-ideological_and_moral_cultivation', 'ceval-test-logic', 'ceval-test-law', 'ceval-test-chinese_language_and_literature', 'ceval-test-art_studies', 'ceval-test-professional_tour_guide', 'ceval-test-legal_professional', 'ceval-test-high_school_chinese', 'ceval-test-high_school_history', 'ceval-test-middle_school_history', ]), dict(name='ceval-test-other', subsets=[ 'ceval-test-civil_servant', 'ceval-test-sports_science', 'ceval-test-plant_protection', 'ceval-test-basic_medicine', 'ceval-test-clinical_medicine', 'ceval-test-urban_and_rural_planner', 'ceval-test-accountant', 'ceval-test-fire_engineer', 'ceval-test-environmental_impact_assessment_engineer', 'ceval-test-tax_accountant', 'ceval-test-physician', ]), dict(name='ceval-test-hard', subsets=[ 'ceval-test-advanced_mathematics', 'ceval-test-discrete_mathematics', 'ceval-test-probability_and_statistics', 'ceval-test-college_chemistry', 'ceval-test-college_physics', 'ceval-test-high_school_mathematics', 'ceval-test-high_school_chemistry', 'ceval-test-high_school_physics', ]), dict(name='ceval-test', subsets=[ 'ceval-test-computer_network', 'ceval-test-operating_system', 'ceval-test-computer_architecture', 'ceval-test-college_programming', 'ceval-test-college_physics', 'ceval-test-college_chemistry', 'ceval-test-advanced_mathematics', 'ceval-test-probability_and_statistics', 'ceval-test-discrete_mathematics', 'ceval-test-electrical_engineer', 'ceval-test-metrology_engineer', 'ceval-test-high_school_mathematics', 'ceval-test-high_school_physics', 'ceval-test-high_school_chemistry', 'ceval-test-high_school_biology', 'ceval-test-middle_school_mathematics', 'ceval-test-middle_school_biology', 'ceval-test-middle_school_physics', 'ceval-test-middle_school_chemistry', 'ceval-test-veterinary_medicine', 'ceval-test-college_economics', 'ceval-test-business_administration', 'ceval-test-marxism', 'ceval-test-mao_zedong_thought', 'ceval-test-education_science', 'ceval-test-teacher_qualification', 'ceval-test-high_school_politics', 'ceval-test-high_school_geography', 'ceval-test-middle_school_politics', 'ceval-test-middle_school_geography', 'ceval-test-modern_chinese_history', 'ceval-test-ideological_and_moral_cultivation', 'ceval-test-logic', 'ceval-test-law', 'ceval-test-chinese_language_and_literature', 'ceval-test-art_studies', 'ceval-test-professional_tour_guide', 'ceval-test-legal_professional', 'ceval-test-high_school_chinese', 'ceval-test-high_school_history', 'ceval-test-middle_school_history', 'ceval-test-civil_servant', 'ceval-test-sports_science', 'ceval-test-plant_protection', 'ceval-test-basic_medicine', 'ceval-test-clinical_medicine', 'ceval-test-urban_and_rural_planner', 'ceval-test-accountant', 'ceval-test-fire_engineer', 'ceval-test-environmental_impact_assessment_engineer', 'ceval-test-tax_accountant', 'ceval-test-physician', ]), dict(name='bbh', subsets=[ 'bbh-temporal_sequences', 'bbh-disambiguation_qa', 'bbh-date_understanding', 'bbh-tracking_shuffled_objects_three_objects', 'bbh-penguins_in_a_table', 'bbh-geometric_shapes', 'bbh-snarks', 'bbh-ruin_names', 'bbh-tracking_shuffled_objects_seven_objects', 'bbh-tracking_shuffled_objects_five_objects', 'bbh-logical_deduction_three_objects', 'bbh-hyperbaton', 'bbh-logical_deduction_five_objects', 'bbh-logical_deduction_seven_objects', 'bbh-movie_recommendation', 'bbh-salient_translation_error_detection', 'bbh-reasoning_about_colored_objects', 'bbh-multistep_arithmetic_two', 'bbh-navigate', 'bbh-dyck_languages', 'bbh-word_sorting', 'bbh-sports_understanding', 'bbh-boolean_expressions', 'bbh-object_counting', 'bbh-formal_fallacies', 'bbh-causal_judgement', 'bbh-web_of_lies', ]), dict(name='GaokaoBench', subsets=[ 'GaokaoBench_2010-2022_Math_II_MCQs', 'GaokaoBench_2010-2022_Math_I_MCQs', 'GaokaoBench_2010-2022_History_MCQs', 'GaokaoBench_2010-2022_Biology_MCQs', 'GaokaoBench_2010-2022_Political_Science_MCQs', 'GaokaoBench_2010-2022_Physics_MCQs', 'GaokaoBench_2010-2022_Chemistry_MCQs', 'GaokaoBench_2010-2013_English_MCQs', 'GaokaoBench_2010-2022_Chinese_Modern_Lit', 'GaokaoBench_2010-2022_English_Fill_in_Blanks', 'GaokaoBench_2012-2022_English_Cloze_Test', 'GaokaoBench_2010-2022_Geography_MCQs', 'GaokaoBench_2010-2022_English_Reading_Comp', 'GaokaoBench_2010-2022_Chinese_Lang_and_Usage_MCQs', ], weights=dict( {'GaokaoBench_2010-2013_English_MCQs': 105, 'GaokaoBench_2010-2022_Biology_MCQs': 900, 'GaokaoBench_2010-2022_Chemistry_MCQs': 744, 'GaokaoBench_2010-2022_Chinese_Lang_and_Usage_MCQs': 240, 'GaokaoBench_2010-2022_Chinese_Modern_Lit': 261, 'GaokaoBench_2010-2022_English_Fill_in_Blanks': 900.0, 'GaokaoBench_2010-2022_English_Reading_Comp': 940, 'GaokaoBench_2010-2022_Geography_MCQs': 380, 'GaokaoBench_2010-2022_History_MCQs': 1148, 'GaokaoBench_2010-2022_Math_II_MCQs': 1090, 'GaokaoBench_2010-2022_Math_I_MCQs': 1070, 'GaokaoBench_2010-2022_Physics_MCQs': 384, 'GaokaoBench_2010-2022_Political_Science_MCQs': 1280, 'GaokaoBench_2012-2022_English_Cloze_Test': 260})), dict(name='flores_100_Indo-European-Germanic_English', subsets=[ 'flores_100_afr-eng', 'flores_100_dan-eng', 'flores_100_deu-eng', 'flores_100_isl-eng', 'flores_100_ltz-eng', 'flores_100_nld-eng', 'flores_100_nob-eng', 'flores_100_swe-eng', ]), dict(name='flores_100_English_Indo-European-Germanic', subsets=[ 'flores_100_eng-afr', 'flores_100_eng-dan', 'flores_100_eng-deu', 'flores_100_eng-isl', 'flores_100_eng-ltz', 'flores_100_eng-nld', 'flores_100_eng-nob', 'flores_100_eng-swe', ]), dict(name='flores_100_Indo-European-Romance_English', subsets=[ 'flores_100_ast-eng', 'flores_100_cat-eng', 'flores_100_fra-eng', 'flores_100_glg-eng', 'flores_100_oci-eng', 'flores_100_por-eng', 'flores_100_ron-eng', 'flores_100_spa-eng', ]), dict(name='flores_100_English_Indo-European-Romance', subsets=[ 'flores_100_eng-ast', 'flores_100_eng-cat', 'flores_100_eng-fra', 'flores_100_eng-glg', 'flores_100_eng-oci', 'flores_100_eng-por', 'flores_100_eng-ron', 'flores_100_eng-spa', ]), dict(name='flores_100_Indo-European-Slavic_English', subsets=[ 'flores_100_bel-eng', 'flores_100_bos-eng', 'flores_100_bul-eng', 'flores_100_ces-eng', 'flores_100_hrv-eng', 'flores_100_mkd-eng', 'flores_100_pol-eng', 'flores_100_rus-eng', 'flores_100_slk-eng', 'flores_100_slv-eng', 'flores_100_srp-eng', 'flores_100_ukr-eng', ]), dict(name='flores_100_English_Indo-European-Slavic', subsets=[ 'flores_100_eng-bel', 'flores_100_eng-bos', 'flores_100_eng-bul', 'flores_100_eng-ces', 'flores_100_eng-hrv', 'flores_100_eng-mkd', 'flores_100_eng-pol', 'flores_100_eng-rus', 'flores_100_eng-slk', 'flores_100_eng-slv', 'flores_100_eng-srp', 'flores_100_eng-ukr', ]), dict(name='flores_100_Indo-European-Indo-Aryan_English', subsets=[ 'flores_100_asm-eng', 'flores_100_ben-eng', 'flores_100_guj-eng', 'flores_100_hin-eng', 'flores_100_mar-eng', 'flores_100_npi-eng', 'flores_100_ory-eng', 'flores_100_pan-eng', 'flores_100_snd-eng', 'flores_100_urd-eng', ]), dict(name='flores_100_English_Indo-European-Indo-Aryan', subsets=[ 'flores_100_eng-asm', 'flores_100_eng-ben', 'flores_100_eng-guj', 'flores_100_eng-hin', 'flores_100_eng-mar', 'flores_100_eng-npi', 'flores_100_eng-ory', 'flores_100_eng-pan', 'flores_100_eng-snd', 'flores_100_eng-urd', ]), dict(name='flores_100_Indo-European-Other_English', subsets=[ 'flores_100_ckb-eng', 'flores_100_cym-eng', 'flores_100_ell-eng', 'flores_100_fas-eng', 'flores_100_gle-eng', 'flores_100_hye-eng', 'flores_100_ita-eng', 'flores_100_lav-eng', 'flores_100_lit-eng', 'flores_100_pus-eng', 'flores_100_tgk-eng', ]), dict(name='flores_100_English_Indo-European-Other', subsets=[ 'flores_100_eng-ckb', 'flores_100_eng-cym', 'flores_100_eng-ell', 'flores_100_eng-fas', 'flores_100_eng-gle', 'flores_100_eng-hye', 'flores_100_eng-ita', 'flores_100_eng-lav', 'flores_100_eng-lit', 'flores_100_eng-pus', 'flores_100_eng-tgk', ]), dict(name='flores_100_Austronesian_English', subsets=[ 'flores_100_ceb-eng', 'flores_100_ind-eng', 'flores_100_jav-eng', 'flores_100_mri-eng', 'flores_100_msa-eng', 'flores_100_tgl-eng', ]), dict(name='flores_100_English_Austronesian', subsets=[ 'flores_100_eng-ceb', 'flores_100_eng-ind', 'flores_100_eng-jav', 'flores_100_eng-mri', 'flores_100_eng-msa', 'flores_100_eng-tgl', ]), dict(name='flores_100_Atlantic-Congo_English', subsets=[ 'flores_100_ibo-eng', 'flores_100_kam-eng', 'flores_100_kea-eng', 'flores_100_lin-eng', 'flores_100_lug-eng', 'flores_100_nso-eng', 'flores_100_nya-eng', 'flores_100_sna-eng', 'flores_100_swh-eng', 'flores_100_umb-eng', 'flores_100_wol-eng', 'flores_100_xho-eng', 'flores_100_yor-eng', 'flores_100_zul-eng', ]), dict(name='flores_100_English_Atlantic-Congo', subsets=[ 'flores_100_eng-ibo', 'flores_100_eng-kam', 'flores_100_eng-kea', 'flores_100_eng-lin', 'flores_100_eng-lug', 'flores_100_eng-nso', 'flores_100_eng-nya', 'flores_100_eng-sna', 'flores_100_eng-swh', 'flores_100_eng-umb', 'flores_100_eng-wol', 'flores_100_eng-xho', 'flores_100_eng-yor', 'flores_100_eng-zul', ]), dict(name='flores_100_Afro-Asiatic_English', subsets=[ 'flores_100_amh-eng', 'flores_100_ara-eng', 'flores_100_ful-eng', 'flores_100_mlt-eng', 'flores_100_orm-eng', 'flores_100_som-eng', ]), dict(name='flores_100_English_Afro-Asiatic', subsets=[ 'flores_100_eng-amh', 'flores_100_eng-ara', 'flores_100_eng-ful', 'flores_100_eng-mlt', 'flores_100_eng-orm', 'flores_100_eng-som', ]), dict(name='flores_100_Turkic_English', subsets=[ 'flores_100_azj-eng', 'flores_100_kaz-eng', 'flores_100_kir-eng', 'flores_100_tur-eng', 'flores_100_uzb-eng', ]), dict(name='flores_100_English_Turkic', subsets=[ 'flores_100_eng-azj', 'flores_100_eng-kaz', 'flores_100_eng-kir', 'flores_100_eng-tur', 'flores_100_eng-uzb', ]), dict(name='flores_100_Dravidian_English', subsets=[ 'flores_100_kan-eng', 'flores_100_mal-eng', 'flores_100_tam-eng', 'flores_100_tel-eng', ]), dict(name='flores_100_English_Dravidian', subsets=[ 'flores_100_eng-kan', 'flores_100_eng-mal', 'flores_100_eng-tam', 'flores_100_eng-tel', ]), dict(name='flores_100_Sino-Tibetan_English', subsets=[ 'flores_100_mya-eng', 'flores_100_zho_simpl-eng', 'flores_100_zho_trad-eng', ]), dict(name='flores_100_English_Sino-Tibetan', subsets=[ 'flores_100_eng-mya', 'flores_100_eng-zho_simpl', 'flores_100_eng-zho_trad', ]), dict(name='flores_100_Other_English', subsets=[ 'flores_100_est-eng', 'flores_100_fin-eng', 'flores_100_hau-eng', 'flores_100_heb-eng', 'flores_100_hun-eng', 'flores_100_jpn-eng', 'flores_100_kat-eng', 'flores_100_khm-eng', 'flores_100_kor-eng', 'flores_100_lao-eng', 'flores_100_luo-eng', 'flores_100_mon-eng', 'flores_100_tha-eng', 'flores_100_vie-eng', ]), dict(name='flores_100_English_Other', subsets=[ 'flores_100_eng-est', 'flores_100_eng-fin', 'flores_100_eng-hau', 'flores_100_eng-heb', 'flores_100_eng-hun', 'flores_100_eng-jpn', 'flores_100_eng-kat', 'flores_100_eng-khm', 'flores_100_eng-kor', 'flores_100_eng-lao', 'flores_100_eng-luo', 'flores_100_eng-mon', 'flores_100_eng-tha', 'flores_100_eng-vie', ]), dict(name='flores_100', subsets=[ 'flores_100_afr-eng', 'flores_100_dan-eng', 'flores_100_deu-eng', 'flores_100_isl-eng', 'flores_100_ltz-eng', 'flores_100_nld-eng', 'flores_100_nob-eng', 'flores_100_swe-eng', 'flores_100_ast-eng', 'flores_100_cat-eng', 'flores_100_fra-eng', 'flores_100_glg-eng', 'flores_100_oci-eng', 'flores_100_por-eng', 'flores_100_ron-eng', 'flores_100_spa-eng', 'flores_100_bel-eng', 'flores_100_bos-eng', 'flores_100_bul-eng', 'flores_100_ces-eng', 'flores_100_hrv-eng', 'flores_100_mkd-eng', 'flores_100_pol-eng', 'flores_100_rus-eng', 'flores_100_slk-eng', 'flores_100_slv-eng', 'flores_100_srp-eng', 'flores_100_ukr-eng', 'flores_100_asm-eng', 'flores_100_ben-eng', 'flores_100_guj-eng', 'flores_100_hin-eng', 'flores_100_mar-eng', 'flores_100_npi-eng', 'flores_100_ory-eng', 'flores_100_pan-eng', 'flores_100_snd-eng', 'flores_100_urd-eng', 'flores_100_ckb-eng', 'flores_100_cym-eng', 'flores_100_ell-eng', 'flores_100_fas-eng', 'flores_100_gle-eng', 'flores_100_hye-eng', 'flores_100_ita-eng', 'flores_100_lav-eng', 'flores_100_lit-eng', 'flores_100_pus-eng', 'flores_100_tgk-eng', 'flores_100_ceb-eng', 'flores_100_ind-eng', 'flores_100_jav-eng', 'flores_100_mri-eng', 'flores_100_msa-eng', 'flores_100_tgl-eng', 'flores_100_ibo-eng', 'flores_100_kam-eng', 'flores_100_kea-eng', 'flores_100_lin-eng', 'flores_100_lug-eng', 'flores_100_nso-eng', 'flores_100_nya-eng', 'flores_100_sna-eng', 'flores_100_swh-eng', 'flores_100_umb-eng', 'flores_100_wol-eng', 'flores_100_xho-eng', 'flores_100_yor-eng', 'flores_100_zul-eng', 'flores_100_amh-eng', 'flores_100_ara-eng', 'flores_100_ful-eng', 'flores_100_mlt-eng', 'flores_100_orm-eng', 'flores_100_som-eng', 'flores_100_azj-eng', 'flores_100_kaz-eng', 'flores_100_kir-eng', 'flores_100_tur-eng', 'flores_100_uzb-eng', 'flores_100_kan-eng', 'flores_100_mal-eng', 'flores_100_tam-eng', 'flores_100_tel-eng', 'flores_100_mya-eng', 'flores_100_zho_simpl-eng', 'flores_100_zho_trad-eng', 'flores_100_est-eng', 'flores_100_fin-eng', 'flores_100_hau-eng', 'flores_100_heb-eng', 'flores_100_hun-eng', 'flores_100_jpn-eng', 'flores_100_kat-eng', 'flores_100_khm-eng', 'flores_100_kor-eng', 'flores_100_lao-eng', 'flores_100_luo-eng', 'flores_100_mon-eng', 'flores_100_tha-eng', 'flores_100_vie-eng', 'flores_100_eng-afr', 'flores_100_eng-dan', 'flores_100_eng-deu', 'flores_100_eng-isl', 'flores_100_eng-ltz', 'flores_100_eng-nld', 'flores_100_eng-nob', 'flores_100_eng-swe', 'flores_100_eng-ast', 'flores_100_eng-cat', 'flores_100_eng-fra', 'flores_100_eng-glg', 'flores_100_eng-oci', 'flores_100_eng-por', 'flores_100_eng-ron', 'flores_100_eng-spa', 'flores_100_eng-bel', 'flores_100_eng-bos', 'flores_100_eng-bul', 'flores_100_eng-ces', 'flores_100_eng-hrv', 'flores_100_eng-mkd', 'flores_100_eng-pol', 'flores_100_eng-rus', 'flores_100_eng-slk', 'flores_100_eng-slv', 'flores_100_eng-srp', 'flores_100_eng-ukr', 'flores_100_eng-asm', 'flores_100_eng-ben', 'flores_100_eng-guj', 'flores_100_eng-hin', 'flores_100_eng-mar', 'flores_100_eng-npi', 'flores_100_eng-ory', 'flores_100_eng-pan', 'flores_100_eng-snd', 'flores_100_eng-urd', 'flores_100_eng-ckb', 'flores_100_eng-cym', 'flores_100_eng-ell', 'flores_100_eng-fas', 'flores_100_eng-gle', 'flores_100_eng-hye', 'flores_100_eng-ita', 'flores_100_eng-lav', 'flores_100_eng-lit', 'flores_100_eng-pus', 'flores_100_eng-tgk', 'flores_100_eng-ceb', 'flores_100_eng-ind', 'flores_100_eng-jav', 'flores_100_eng-mri', 'flores_100_eng-msa', 'flores_100_eng-tgl', 'flores_100_eng-ibo', 'flores_100_eng-kam', 'flores_100_eng-kea', 'flores_100_eng-lin', 'flores_100_eng-lug', 'flores_100_eng-nso', 'flores_100_eng-nya', 'flores_100_eng-sna', 'flores_100_eng-swh', 'flores_100_eng-umb', 'flores_100_eng-wol', 'flores_100_eng-xho', 'flores_100_eng-yor', 'flores_100_eng-zul', 'flores_100_eng-amh', 'flores_100_eng-ara', 'flores_100_eng-ful', 'flores_100_eng-mlt', 'flores_100_eng-orm', 'flores_100_eng-som', 'flores_100_eng-azj', 'flores_100_eng-kaz', 'flores_100_eng-kir', 'flores_100_eng-tur', 'flores_100_eng-uzb', 'flores_100_eng-kan', 'flores_100_eng-mal', 'flores_100_eng-tam', 'flores_100_eng-tel', 'flores_100_eng-mya', 'flores_100_eng-zho_simpl', 'flores_100_eng-zho_trad', 'flores_100_eng-est', 'flores_100_eng-fin', 'flores_100_eng-hau', 'flores_100_eng-heb', 'flores_100_eng-hun', 'flores_100_eng-jpn', 'flores_100_eng-kat', 'flores_100_eng-khm', 'flores_100_eng-kor', 'flores_100_eng-lao', 'flores_100_eng-luo', 'flores_100_eng-mon', 'flores_100_eng-tha', 'flores_100_eng-vie', ]), dict(name='tydiqa-goldp', subsets=[ 'tydiqa-goldp_arabic', 'tydiqa-goldp_bengali', 'tydiqa-goldp_english', 'tydiqa-goldp_finnish', 'tydiqa-goldp_indonesian', 'tydiqa-goldp_japanese', 'tydiqa-goldp_korean', 'tydiqa-goldp_russian', 'tydiqa-goldp_swahili', 'tydiqa-goldp_telugu', 'tydiqa-goldp_thai', ]), dict(name='xiezhi', subsets=[ 'xiezhi-spec_eng', 'xiezhi-spec_chn', 'xiezhi-inter_eng', 'xiezhi-inter_chn', ]), dict(name='scibench', subsets=[ 'scibench-atkins', 'scibench-calculus', 'scibench-chemmc', 'scibench-class', 'scibench-diff', 'scibench-fund', 'scibench-matter', 'scibench-quan', 'scibench-stat', 'scibench-thermo', ]), dict(name='scibench_zs-cot', subsets=[ 'scibench-atkins_zs-cot', 'scibench-calculus_zs-cot', 'scibench-chemmc_zs-cot', 'scibench-class_zs-cot', 'scibench-diff_zs-cot', 'scibench-fund_zs-cot', 'scibench-matter_zs-cot', 'scibench-quan_zs-cot', 'scibench-stat_zs-cot', 'scibench-thermo_zs-cot', ]), dict(name='scibench_fs', subsets=[ 'scibench-atkins_fs', 'scibench-calculus_fs', 'scibench-chemmc_fs', 'scibench-class_fs', 'scibench-diff_fs', 'scibench-fund_fs', 'scibench-matter_fs', 'scibench-quan_fs', 'scibench-stat_fs', 'scibench-thermo_fs', ]), dict(name='scibench_fs-cot', subsets=[ 'scibench-atkins_fs-cot', 'scibench-calculus_fs-cot', 'scibench-chemmc_fs-cot', 'scibench-class_fs-cot', 'scibench-diff_fs-cot', 'scibench-fund_fs-cot', 'scibench-matter_fs-cot', 'scibench-quan_fs-cot', 'scibench-stat_fs-cot', 'scibench-thermo_fs-cot', ]), ]) work_dir='./outputs/default/20240307_100653'