# Usage: python eval_mmbench.py mmbench_dev_inference_result.xlsx import argparse import json import os.path as osp import pickle import random as rd import string from collections import defaultdict import numpy as np import pandas as pd from tqdm import tqdm from opencompass.models import OpenAI fout = None # Utils def double_log(msg, fout=None): print(msg) if fout is not None: fout.write(str(msg) + '\n') fout.flush() def dump(data, f): def dump_pkl(data, pth): pickle.dump(data, open(pth, 'wb')) def dump_json(data, pth): json.dump(data, open(pth, 'w')) def dump_jsonl(data, f): lines = [json.dumps(x, ensure_ascii=False) for x in data] with open(f, 'w', encoding='utf8') as fout: fout.write('\n'.join(lines)) def dump_xlsx(data, f): data.to_excel(f, index=False) def dump_csv(data, f): data.to_csv(f, index=False) def dump_tsv(data, f): data.to_csv(f, sep='\t', index=False) handlers = dict(pkl=dump_pkl, json=dump_json, jsonl=dump_jsonl, xlsx=dump_xlsx, csv=dump_csv, tsv=dump_tsv) suffix = f.split('.')[-1] return handlers[suffix](data, f) def load(f): def load_pkl(pth): return pickle.load(open(pth, 'rb')) def load_json(pth): return json.load(open(pth, 'r', encoding='utf-8')) def load_jsonl(f): lines = open(f, encoding='utf-8').readlines() lines = [x.strip() for x in lines] if lines[-1] == '': lines = lines[:-1] data = [json.loads(x) for x in lines] return data def load_xlsx(f): return pd.read_excel(f) def load_csv(f): return pd.read_csv(f) def load_tsv(f): return pd.read_csv(f, sep='\t') handlers = dict(pkl=load_pkl, json=load_json, jsonl=load_jsonl, xlsx=load_xlsx, csv=load_csv, tsv=load_tsv) suffix = f.split('.')[-1] return handlers[suffix](f) # Accuracy Report def report_acc(df, group='category'): assert 'split' in df assert group in [None, 'category', 'l2-category'] res = defaultdict(list) res['split'] = ['full', 'dev', 'test'] if group is None: res['overall'] = [ np.mean(df['hit']), np.mean(df[df['split'] == 'dev']['hit']), np.mean(df[df['split'] == 'test']['hit']) ] return pd.DataFrame(res) elif group in df: abilities = list(set(df[group])) abilities.sort() for ab in abilities: sub_df = df[df[group] == ab] res[ab] = [ np.mean(sub_df['hit']), np.mean(sub_df[sub_df['split'] == 'dev']['hit']), np.mean(sub_df[sub_df['split'] == 'test']['hit']) ] return pd.DataFrame(res) # Prompt Building def build_option_str(option_list): chars = string.ascii_uppercase s = 'There are several options: \n' for c, opt in zip(chars, option_list): if not pd.isna(opt): s += f'{c}. {opt}\n' else: return s return s def extract_options(item): options = [] for c in 'ABCD': if c in item and not pd.isna(item[c]): options.append(item[c]) else: return options return options def build_choices(item): ret = {} for ch in 'ABCD': if not pd.isna(item[ch]): ret[ch] = item[ch] return ret def build_prompt(question, options, prediction): tmpl = ( 'You are an AI assistant who will help me to match an answer ' 'with several options of a single-choice question. ' 'You are provided with a question, several options, and an answer, ' 'and you need to find which option is most similar to the answer. ' 'If the meaning of all options are significantly different ' 'from the answer, output E. ' 'Your should output a single uppercase character in A, B, C, D ' '(if they are valid options), and E. \n' 'Example 1: \n' 'Question: What is the main object in image?\nOptions: A. teddy bear ' 'B. rabbit C. cat D. dog\nAnswer: a cute teddy bear\nYour output: A\n' 'Example 2: \n' 'Question: What is the main object in image?\nOptions: A. teddy bear ' 'B. rabbit C. cat D. dog\nAnswer: Spider\nYour output: E\n' 'Example 3: \n' 'Question: {}?\nOptions: {}\nAnswer: {}\nYour output: ') return tmpl.format(question, options, prediction) # Prefetch Answers def can_infer_option(answer, num_choice=5): choices = string.ascii_uppercase[:num_choice] if 'Failed to obtain answer via API' in answer: return False def count(splits, choices='ABCD', prefix='', suffix=''): cnt = 0 for c in choices: if prefix + c + suffix in splits: cnt += 1 return cnt splits = [x.strip() for x in answer.split()] if count(splits, choices) == 1: for ch in choices: if 'A' in splits and len(splits) > 3: double_log( f'A might be a quantifier in the string: {answer}. ', fout) break if ch in splits: return ch tups = [('', '.'), ('', ','), ('', ':'), ('', ')'), ('', ').'), ('(', ')'), ('(', ').'), (':', ''), (':', ','), (':', '.'), (':', ')'), (':', ').')] for tup in tups: if count(splits, choices, prefix=tup[0], suffix=tup[1]) == 1: for ch in choices: if tup[0] + ch + tup[1] in splits: return ch return False def can_infer_text(answer, choices): answer = answer.lower() assert isinstance(choices, dict) for k in choices: assert k in 'ABCD' choices[k] = str(choices[k]).lower() cands = [] for k in choices: if choices[k] in answer: cands.append(k) if len(cands) == 1: return cands[0] return False def can_infer(answer, choices): copt = can_infer_option(answer) return copt if copt else can_infer_text(answer, choices) def prefetch_answer(item): choices = build_choices(item) return can_infer(item['prediction'], choices) # Extract answer from a single record def extract_answer_from_item(model, item): # It will return: (pred, raw, llm_time) options = extract_options(item) option_str = build_option_str(options) prompt = build_prompt(item['question'], option_str, item['prediction']) retry = 3 choices = build_choices(item) ret = can_infer(item['prediction'], choices) if ret: return ret, item['prediction'] while retry: ans = model.generate([prompt])[0] if 'Failed to obtain answer via API' in ans: msg = 'GPT API failed to answer. ' double_log(msg, fout) retry -= 1 else: ret = can_infer(ans, choices) if ret: return ret, ans else: double_log( f'GPT output includes 0 / >1 letter in "ABCD": {ans}', fout) retry -= 1 if retry == 0: num_options = sum([ch in item for ch in 'ABCD']) if num_options >= 2: chars = string.ascii_uppercase[:num_options] chars = chars + 'E' num_options += 1 tmp = rd.randint(0, num_options - 1) return chars[ tmp], 'Failed to predict, thus randomly generate one. ' # Extract answer from multiple rolling records def eval_sub_data(model, sub_data, answer_map): lt = len(sub_data) GT, PRED = [], [] for i in range(lt): item = sub_data.iloc[i] idx = item['index'] GT.append(answer_map[idx]) PRED.append(prefetch_answer(item)) if PRED[-1] and (GT[-1] != PRED[-1]): return 0 for i in range(lt): if PRED[i]: continue else: ret, _ = extract_answer_from_item(model, sub_data.iloc[i]) PRED[i] = ret if PRED[i] != GT[i]: return 0 return 1 # Evaluate Results def eval_result(eval_file, eval_method, meta_file): rd.seed(2680) assert eval_method == 'openai' # Set a large retry number to avoid failure model = OpenAI('gpt-3.5-turbo-0613', retry=99) double_log(f'Evaluating {eval_file}', fout) result_file = eval_file.replace('.xlsx', f'_{eval_method}_result.pkl') result = {} if osp.exists(result_file): result = load(result_file) data = load(eval_file) data = data.sort_values(by='index') data['prediction'] = [str(x) for x in data['prediction']] for k in data.keys(): data[k.lower() if k not in 'ABCD' else k] = data.pop(k) meta = load(meta_file) data_main = data[data['index'] < int(1e6)] cate_map = {i: c for i, c in zip(meta['index'], meta['category'])} l2_cate_map = {i: c for i, c in zip(meta['index'], meta['l2-category'])} split_map = {i: c for i, c in zip(meta['index'], meta['split'])} answer_map = {i: c for i, c in zip(meta['index'], meta['answer'])} lt = len(data_main) hit, tot = 0, 0 for i in tqdm(range(lt)): # Dealing with the normal part item_main = data_main.iloc[i] idx = item_main['index'] if idx in result: correct = result[idx] assert correct in [0, 1] hit += correct tot += 1 continue sub_data = data[data['index'] % int(1e6) == idx] ret = eval_sub_data(model, sub_data, answer_map) result[idx] = ret hit += ret tot += 1 dump(result, result_file) if (i + 1) % 10 == 0: double_log((f'Evaluating {eval_file}: {i + 1}/{lt}, ' f'Acc: {hit / tot * 100: .2f}%. '), fout) dump(data_main, 'tmp.xlsx') data_main = load('tmp.xlsx') res = load(result_file) indices = data_main['index'] data_main['hit'] = [res[i] for i in indices] data_main['split'] = [split_map[i] for i in indices] main_idx = data_main['index'] data_main['category'] = [cate_map[i] for i in main_idx] data_main['l2-category'] = [l2_cate_map[i] for i in main_idx] # load split dump(data_main, eval_file.replace('.xlsx', f'_{eval_method}_result.xlsx')) data_main = load(eval_file.replace('.xlsx', f'_{eval_method}_result.xlsx')) overall = report_acc(data_main, None) dump(overall, eval_file.replace('.xlsx', '_overall.csv')) double_log(overall) l2 = report_acc(data_main, 'l2-category') dump(l2, eval_file.replace('.xlsx', '_l2.csv')) double_log(l2) leaf = report_acc(data_main, 'category') dump(leaf, eval_file.replace('.xlsx', '_leaf.csv')) double_log(leaf) if fout is not None: fout.close() return overall, l2, leaf def parse_args(): parser = argparse.ArgumentParser( description='Evaluate Inference Results of MMBench-DEV SPLIT. ') parser.add_argument('result', type=str, help='The path to your inference result. ') parser.add_argument('--meta', type=str, default='data/mmbench_dev_20230712.tsv', help=('The path to your meta file (dev). ' 'Downloaded from MMBench website. ')) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() log_pth = args.result.replace('.xlsx', '_openai_eval.log') fout = open(log_pth, 'a') acc, l2, leaf = eval_result(args.result, 'openai', args.meta)