|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch RoBERTa model. Modify the transformers implementation to accept **kwargs.""" |
|
|
|
import math |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from packaging import version |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers import RobertaConfig |
|
from transformers.activations import ACT2FN, gelu |
|
from transformers.adapters.model_mixin import ModelWithHeadsAdaptersMixin |
|
from transformers.adapters.models.bert import ( |
|
BertEncoderAdaptersMixin, |
|
BertLayerAdaptersMixin, |
|
BertModelAdaptersMixin, |
|
BertModelHeadsMixin, |
|
BertOutputAdaptersMixin, |
|
BertSelfOutputAdaptersMixin, |
|
) |
|
from transformers.file_utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
replace_return_docstrings, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
MaskedLMOutput, |
|
MultipleChoiceModelOutput, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import ( |
|
PreTrainedModel, |
|
apply_chunking_to_forward, |
|
find_pruneable_heads_and_indices, |
|
prune_linear_layer, |
|
) |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "roberta-base" |
|
_CONFIG_FOR_DOC = "RobertaConfig" |
|
_TOKENIZER_FOR_DOC = "RobertaTokenizer" |
|
|
|
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"roberta-base", |
|
"roberta-large", |
|
"roberta-large-mnli", |
|
"distilroberta-base", |
|
"roberta-base-openai-detector", |
|
"roberta-large-openai-detector", |
|
|
|
] |
|
|
|
|
|
class RobertaEmbeddings(nn.Module): |
|
""" |
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. |
|
""" |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) |
|
if version.parse(torch.__version__) > version.parse("1.6.0"): |
|
self.register_buffer( |
|
"token_type_ids", |
|
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), |
|
persistent=False, |
|
) |
|
|
|
|
|
self.padding_idx = config.pad_token_id |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx |
|
) |
|
|
|
def forward( |
|
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 |
|
): |
|
if position_ids is None: |
|
if input_ids is not None: |
|
|
|
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) |
|
else: |
|
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) |
|
|
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
|
|
Args: |
|
inputs_embeds: torch.Tensor |
|
|
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape) |
|
|
|
|
|
|
|
class RobertaSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
**kwargs, |
|
): |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) |
|
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) |
|
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
|
|
class RobertaSelfOutput(BertSelfOutputAdaptersMixin, nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self._init_adapter_modules() |
|
|
|
def forward(self, hidden_states, input_tensor, **kwargs): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.adapters_forward(hidden_states, input_tensor, **kwargs) |
|
return hidden_states |
|
|
|
|
|
|
|
class RobertaAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.self = RobertaSelfAttention(config) |
|
self.output = RobertaSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
**kwargs |
|
): |
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
**kwargs, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states, **kwargs) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
|
|
class RobertaIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class RobertaOutput(BertOutputAdaptersMixin, nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self._init_adapter_modules() |
|
|
|
def forward(self, hidden_states, input_tensor, **kwargs): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.adapters_forward(hidden_states, input_tensor, **kwargs) |
|
return hidden_states |
|
|
|
|
|
|
|
class RobertaLayer(BertLayerAdaptersMixin, nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = RobertaAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added" |
|
self.crossattention = RobertaAttention(config) |
|
self.intermediate = RobertaIntermediate(config) |
|
self.output = RobertaOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
**kwargs |
|
): |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
**kwargs, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[1:] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
assert hasattr( |
|
self, "crossattention" |
|
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, **kwargs |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output, **kwargs): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output, **kwargs) |
|
return layer_output |
|
|
|
|
|
|
|
class RobertaEncoder(BertEncoderAdaptersMixin, nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
**kwargs |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
attention_mask = self.adjust_attention_mask_for_parallel(hidden_states, attention_mask) |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class RobertaPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class RobertaPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = RobertaConfig |
|
base_model_prefix = "roberta" |
|
supports_gradient_checkpointing = True |
|
|
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, RobertaEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
def update_keys_to_ignore(self, config, del_keys_to_ignore): |
|
"""Remove some keys from ignore list""" |
|
if not config.tie_word_embeddings: |
|
|
|
self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore] |
|
self._keys_to_ignore_on_load_missing = [ |
|
k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore |
|
] |
|
|
|
|
|
ROBERTA_START_DOCSTRING = r""" |
|
|
|
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic |
|
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, |
|
pruning heads etc.) |
|
|
|
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ |
|
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to |
|
general usage and behavior. |
|
|
|
Parameters: |
|
config (:class:`~transformers.RobertaConfig`): Model configuration class with all the parameters of the |
|
model. Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model |
|
weights. |
|
""" |
|
|
|
ROBERTA_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using :class:`~transformers.RobertaTokenizer`. See |
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for |
|
details. |
|
|
|
`What are input IDs? <../glossary.html#input-ids>`__ |
|
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__ |
|
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, |
|
1]``: |
|
|
|
- 0 corresponds to a `sentence A` token, |
|
- 1 corresponds to a `sentence B` token. |
|
|
|
`What are token type IDs? <../glossary.html#token-type-ids>`_ |
|
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, |
|
config.max_position_embeddings - 1]``. |
|
|
|
`What are position IDs? <../glossary.html#position-ids>`_ |
|
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): |
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated |
|
vectors than the model's internal embedding lookup matrix. |
|
output_attentions (:obj:`bool`, `optional`): |
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned |
|
tensors for more detail. |
|
output_hidden_states (:obj:`bool`, `optional`): |
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for |
|
more detail. |
|
return_dict (:obj:`bool`, `optional`): |
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", |
|
ROBERTA_START_DOCSTRING, |
|
) |
|
class RobertaModel(BertModelAdaptersMixin, RobertaPreTrainedModel): |
|
""" |
|
|
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in `Attention is |
|
all you need`_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz |
|
Kaiser and Illia Polosukhin. |
|
|
|
To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration |
|
set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder` |
|
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an |
|
input to the forward pass. |
|
|
|
.. _`Attention is all you need`: https://arxiv.org/abs/1706.03762 |
|
|
|
""" |
|
|
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = RobertaEmbeddings(config) |
|
self.encoder = RobertaEncoder(config) |
|
|
|
self.pooler = RobertaPooler(config) if add_pooling_layer else None |
|
|
|
self._init_adapter_modules() |
|
|
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
tokenizer_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPoolingAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
**kwargs |
|
): |
|
r""" |
|
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` |
|
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` |
|
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. |
|
use_cache (:obj:`bool`, `optional`): |
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up |
|
decoding (see :obj:`past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
self.pre_transformer_forward(**kwargs) |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
|
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
embedding_output = self.invertible_adapters_forward(embedding_output) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
**kwargs, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""Roberta Model transformer with the option to add multiple flexible heads on top.""", |
|
ROBERTA_START_DOCSTRING, |
|
) |
|
class RobertaModelWithHeads(BertModelHeadsMixin, RobertaPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.roberta = RobertaModel(config) |
|
|
|
self._init_head_modules() |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
tokenizer_class=_TOKENIZER_FOR_DOC, |
|
checkpoint="roberta-base", |
|
output_type=ModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
adapter_names=None, |
|
head=None, |
|
**kwargs |
|
): |
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None |
|
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None |
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None |
|
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None |
|
inputs_embeds = ( |
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) |
|
if inputs_embeds is not None |
|
else None |
|
) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
adapter_names=adapter_names, |
|
) |
|
|
|
if not return_dict: |
|
head_inputs = (outputs[0],) + outputs[2:] |
|
else: |
|
head_inputs = outputs |
|
pooled_output = outputs[1] |
|
|
|
if head or self.active_head: |
|
head_outputs = self.forward_head( |
|
head_inputs, |
|
head_name=head, |
|
attention_mask=attention_mask, |
|
return_dict=return_dict, |
|
pooled_output=pooled_output, |
|
**kwargs, |
|
) |
|
return head_outputs |
|
else: |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""RoBERTa Model with a `language modeling` head on top for CLM fine-tuning. """, ROBERTA_START_DOCSTRING |
|
) |
|
class RobertaForCausalLM(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): |
|
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"] |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if not config.is_decoder: |
|
logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`") |
|
|
|
self.roberta = RobertaModel(config, add_pooling_layer=False) |
|
self.lm_head = RobertaLMHead(config) |
|
|
|
|
|
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
labels=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
adapter_names=None, |
|
): |
|
r""" |
|
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are |
|
ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` |
|
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` |
|
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` |
|
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. |
|
use_cache (:obj:`bool`, `optional`): |
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up |
|
decoding (see :obj:`past_key_values`). |
|
|
|
Returns: |
|
|
|
Example:: |
|
|
|
>>> from transformers import RobertaTokenizer, RobertaForCausalLM, RobertaConfig |
|
>>> import torch |
|
|
|
>>> tokenizer = RobertaTokenizer.from_pretrained('roberta-base') |
|
>>> config = RobertaConfig.from_pretrained("roberta-base") |
|
>>> config.is_decoder = True |
|
>>> model = RobertaForCausalLM.from_pretrained('roberta-base', config=config) |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> prediction_logits = outputs.logits |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
if labels is not None: |
|
use_cache = False |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
adapter_names=adapter_names, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.lm_head( |
|
sequence_output, |
|
inv_lang_adapter=self.roberta.get_invertible_adapter(), |
|
) |
|
|
|
lm_loss = None |
|
if labels is not None: |
|
|
|
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=lm_loss, |
|
logits=prediction_scores, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): |
|
input_shape = input_ids.shape |
|
|
|
if attention_mask is None: |
|
attention_mask = input_ids.new_ones(input_shape) |
|
|
|
|
|
if past is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} |
|
|
|
def _reorder_cache(self, past, beam_idx): |
|
reordered_past = () |
|
for layer_past in past: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top. """, ROBERTA_START_DOCSTRING) |
|
class RobertaForMaskedLM(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): |
|
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"] |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if config.is_decoder: |
|
logger.warning( |
|
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for " |
|
"bi-directional self-attention." |
|
) |
|
|
|
self.roberta = RobertaModel(config, add_pooling_layer=False) |
|
self.lm_head = RobertaLMHead(config) |
|
|
|
|
|
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
tokenizer_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MaskedLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
mask="<mask>", |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
adapter_names=None, |
|
**kwargs, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., |
|
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored |
|
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` |
|
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): |
|
Used to hide legacy arguments that have been deprecated. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
**kwargs, |
|
) |
|
sequence_output = outputs[0] |
|
prediction_scores = self.lm_head( |
|
sequence_output, |
|
inv_lang_adapter=self.roberta.get_invertible_adapter(), |
|
) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class RobertaLMHead(nn.Module): |
|
"""Roberta Head for masked language modeling.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size) |
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, features, inv_lang_adapter=None, **kwargs): |
|
x = self.dense(features) |
|
x = gelu(x) |
|
x = self.layer_norm(x) |
|
|
|
if inv_lang_adapter: |
|
x = inv_lang_adapter(x, rev=True) |
|
|
|
|
|
x = self.decoder(x) |
|
|
|
return x |
|
|
|
def _tie_weights(self): |
|
|
|
self.bias = self.decoder.bias |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the |
|
pooled output) e.g. for GLUE tasks. |
|
""", |
|
ROBERTA_START_DOCSTRING, |
|
) |
|
class RobertaForSequenceClassification(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.roberta = RobertaModel(config, add_pooling_layer=False) |
|
self.classifier = RobertaClassificationHead(config) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
tokenizer_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=SequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
adapter_names=None, |
|
**kwargs, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., |
|
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), |
|
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
adapter_names=adapter_names, |
|
**kwargs, |
|
) |
|
sequence_output = outputs[0] |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a |
|
softmax) e.g. for RocStories/SWAG tasks. |
|
""", |
|
ROBERTA_START_DOCSTRING, |
|
) |
|
class RobertaForMultipleChoice(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.roberta = RobertaModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, 1) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) |
|
@add_code_sample_docstrings( |
|
tokenizer_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MultipleChoiceModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
labels=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
adapter_names=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., |
|
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See |
|
:obj:`input_ids` above) |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] |
|
|
|
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None |
|
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None |
|
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None |
|
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None |
|
flat_inputs_embeds = ( |
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) |
|
if inputs_embeds is not None |
|
else None |
|
) |
|
|
|
outputs = self.roberta( |
|
flat_input_ids, |
|
position_ids=flat_position_ids, |
|
token_type_ids=flat_token_type_ids, |
|
attention_mask=flat_attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=flat_inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
adapter_names=adapter_names, |
|
) |
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
reshaped_logits = logits.view(-1, num_choices) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(reshaped_logits, labels) |
|
|
|
if not return_dict: |
|
output = (reshaped_logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return MultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=reshaped_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
ROBERTA_START_DOCSTRING, |
|
) |
|
class RobertaForTokenClassification(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.roberta = RobertaModel(config, add_pooling_layer=False) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
tokenizer_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
adapter_names=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - |
|
1]``. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
adapter_names=adapter_names, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
if attention_mask is not None: |
|
active_loss = attention_mask.view(-1) == 1 |
|
active_logits = logits.view(-1, self.num_labels) |
|
active_labels = torch.where( |
|
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) |
|
) |
|
loss = loss_fct(active_logits, active_labels) |
|
else: |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class RobertaClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
def forward(self, features, **kwargs): |
|
x = features[:, 0, :] |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = torch.tanh(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear |
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
ROBERTA_START_DOCSTRING, |
|
) |
|
class RobertaForQuestionAnswering(ModelWithHeadsAdaptersMixin, RobertaPreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.roberta = RobertaModel(config, add_pooling_layer=False) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
tokenizer_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=QuestionAnsweringModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
start_positions=None, |
|
end_positions=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
adapter_names=None, |
|
): |
|
r""" |
|
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the |
|
sequence are not taken into account for computing the loss. |
|
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the |
|
sequence are not taken into account for computing the loss. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
|
|
Args: |
|
x: torch.Tensor x: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
from dataclasses import dataclass |
|
from typing import Union, Callable |
|
|
|
import torch.nn as nn |
|
|
|
|
|
@dataclass |
|
class AdapterMaskConfig: |
|
hidden_size: int |
|
adapter_size: int |
|
ffn_adapter_size: int |
|
attn_adapter_size: int |
|
adapter_act: Union[str, Callable] |
|
adapter_initializer_range: float |
|
ntasks: int |
|
smax: int |
|
mode: str = "sequential" |
|
|
|
def __post_init__(self): |
|
if self.mode not in ("sequential", "parallel"): |
|
raise NotImplementedError(f"The current mode {self.mode} is not supported!") |
|
|
|
|
|
def freeze_all_parameters(model: nn.Module) -> nn.Module: |
|
for param in model.parameters(): |
|
param.requires_grad = False |
|
return model |
|
|
|
"""Roberta model with CPT CL-plugins.""" |
|
import math |
|
from copy import deepcopy |
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import BertModel |
|
from transformers.models.bert.modeling_bert import BertSelfOutput |
|
from transformers.models.roberta.modeling_roberta import RobertaSelfAttention |
|
|
|
|
|
class RobertaAdapter(nn.Module): |
|
def __init__(self, config: AdapterMaskConfig): |
|
super().__init__() |
|
self.fc1 = torch.nn.Linear(config.hidden_size, config.adapter_size) |
|
self.fc2 = torch.nn.Linear(config.adapter_size, config.hidden_size) |
|
self.activation = torch.nn.ReLU() |
|
|
|
def forward(self, x): |
|
h = self.activation(self.fc1(x)) |
|
h = self.activation(self.fc2(h)) |
|
return x + h |
|
|
|
|
|
|
|
class RobertaAdapterMask(RobertaAdapter): |
|
def __init__(self, config: AdapterMaskConfig): |
|
super().__init__(config) |
|
self.efc1 = torch.nn.Embedding(config.ntasks, config.adapter_size) |
|
self.efc2 = torch.nn.Embedding(config.ntasks, config.hidden_size) |
|
self.gate = torch.nn.Sigmoid() |
|
self.config = config |
|
self.smax = config.smax |
|
|
|
def forward(self, x, t, s, smax=400, add_residual=True, residual=None): |
|
residual = x if residual is None else residual |
|
gfc1, gfc2 = self.mask(t=t, s=s) |
|
h = self.get_feature(gfc1, gfc2, x) |
|
if add_residual: |
|
output = residual + h |
|
else: |
|
output = h |
|
|
|
return output |
|
|
|
def get_feature(self, gfc1, gfc2, x): |
|
h = self.activation(self.fc1(x)) |
|
h = h * gfc1.expand_as(h) |
|
|
|
h = self.activation(self.fc2(h)) |
|
h = h * gfc2.expand_as(h) |
|
|
|
return h |
|
|
|
def mask(self, t: torch.LongTensor, s: int = None): |
|
|
|
efc1 = self.efc1(t) |
|
efc2 = self.efc2(t) |
|
|
|
gfc1 = self.gate(s * efc1) |
|
gfc2 = self.gate(s * efc2) |
|
|
|
if s == self.smax: |
|
gfc1 = (gfc1 > 0.5).float() |
|
gfc2 = (gfc2 > 0.5).float() |
|
|
|
return [gfc1, gfc2] |
|
|
|
|
|
class RobertaAdaptedSelfOutput(nn.Module): |
|
def __init__(self, |
|
self_output: BertSelfOutput, |
|
config: AdapterMaskConfig): |
|
super(RobertaAdaptedSelfOutput, self).__init__() |
|
self.self_output = self_output |
|
self.adapter_mask = RobertaAdapterMask(config) |
|
self.mode = config.mode |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, t, s, **kwargs): |
|
if self.mode == "sequential": |
|
hidden_states = self.self_output.dense(hidden_states) |
|
hidden_states = self.self_output.dropout(hidden_states) |
|
hidden_states = self.adapter_mask(hidden_states, t, s) |
|
elif self.mode == "parallel": |
|
adapter_change = self.adapter_mask(input_tensor, t, s) |
|
hidden_states = self.self_output.dense(hidden_states) |
|
hidden_states = self.self_output.dropout(hidden_states) |
|
hidden_states = hidden_states + adapter_change |
|
hidden_states = self.self_output.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class RobertaAdaptedSelfAttention(nn.Module): |
|
"""For parallel adapter.""" |
|
|
|
def __init__(self, |
|
self_attn: RobertaSelfAttention, |
|
config: AdapterMaskConfig): |
|
super(RobertaAdaptedSelfAttention, self).__init__() |
|
if config.mode != "parallel": |
|
raise ValueError("This class is tailored for parallel adapter!") |
|
self.self_attn = self_attn |
|
self.adapter_mask = RobertaAdapterMask(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
past_key_value=None, |
|
output_attentions=False, |
|
t=None, |
|
s=None, |
|
**kwargs, |
|
): |
|
mixed_query_layer = self.self_attn.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.self_attn.transpose_for_scores(self.self_attn.key(encoder_hidden_states)) |
|
value_layer = self.self_attn.transpose_for_scores(self.self_attn.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.self_attn.transpose_for_scores(self.self_attn.key(hidden_states)) |
|
value_layer = self.self_attn.transpose_for_scores(self.self_attn.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.self_attn.transpose_for_scores(self.self_attn.key(hidden_states)) |
|
value_layer = self.self_attn.transpose_for_scores(self.self_attn.value(hidden_states)) |
|
|
|
query_layer = self.self_attn.transpose_for_scores(mixed_query_layer) |
|
|
|
if self.self_attn.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
cross_attn_output = self.adapter_mask(hidden_states, t=t, s=s, add_residual=False) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if self.self_attn.position_embedding_type == "relative_key" or self.self_attn.position_embedding_type == "relative_key_query": |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) |
|
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.self_attn.distance_embedding( |
|
distance + self.self_attn.max_position_embeddings - 1) |
|
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) |
|
|
|
if self.self_attn.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.self_attn.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key |
|
|
|
attention_scores = attention_scores / math.sqrt(self.self_attn.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
|
|
attention_probs = self.self_attn.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.self_attn.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
context_layer = context_layer + cross_attn_output |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
if self.self_attn.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
def adapt_roberta_self_output(config: AdapterMaskConfig): |
|
return lambda self_output: RobertaAdaptedSelfOutput(self_output, config=config) |
|
|
|
|
|
def adapt_roberta_self_attn(config: AdapterMaskConfig): |
|
return lambda self_attn: RobertaAdaptedSelfAttention(self_attn, config=config) |
|
|
|
|
|
def add_roberta_adapters(roberta_model: BertModel, config: AdapterMaskConfig) -> BertModel: |
|
attn_config, ffn_config = deepcopy(config), deepcopy(config) |
|
attn_config.adapter_size = attn_config.attn_adapter_size |
|
ffn_config.adapter_size = ffn_config.ffn_adapter_size |
|
|
|
if config.mode == "sequential": |
|
for layer in roberta_model.encoder.layer: |
|
layer.attention.output = adapt_roberta_self_output( |
|
attn_config)(layer.attention.output) |
|
layer.output = adapt_roberta_self_output(ffn_config)(layer.output) |
|
elif config.mode == "parallel": |
|
for layer in roberta_model.encoder.layer: |
|
layer.attention.self = adapt_roberta_self_attn(attn_config)(layer.attention.self) |
|
layer.output = adapt_roberta_self_output(ffn_config)(layer.output) |
|
return roberta_model |
|
|
|
|
|
def unfreeze_roberta_adapters(roberta_model: nn.Module) -> nn.Module: |
|
|
|
for name, sub_module in roberta_model.named_modules(): |
|
if isinstance(sub_module, (RobertaAdapter, nn.LayerNorm)): |
|
for param_name, param in sub_module.named_parameters(): |
|
param.requires_grad = True |
|
return roberta_model |
|
|
|
|
|
def load_roberta_adapter_model( |
|
roberta_model: nn.Module, |
|
checkpoint: str = None, |
|
mode: str = "sequential", |
|
attn_adapter_size: int = 200, |
|
ffn_adapter_size: int = 512, |
|
ntasks: int = 5): |
|
adapter_config = AdapterMaskConfig( |
|
hidden_size=768, |
|
adapter_size=-1, |
|
adapter_act='relu', |
|
adapter_initializer_range=1e-2, |
|
ntasks=ntasks, |
|
smax=400, |
|
mode=mode, |
|
attn_adapter_size=attn_adapter_size, |
|
ffn_adapter_size=ffn_adapter_size, |
|
) |
|
roberta_model.roberta = add_roberta_adapters( |
|
roberta_model.roberta, adapter_config) |
|
|
|
|
|
roberta_model.roberta = freeze_all_parameters(roberta_model.roberta) |
|
roberta_model.roberta = unfreeze_roberta_adapters(roberta_model.roberta) |
|
|
|
if checkpoint is not None and checkpoint != 'None': |
|
print("loading checkpoint...") |
|
model_dict = roberta_model.state_dict() |
|
pretrained_dict = torch.load(checkpoint, map_location='cpu') |
|
new_dict = {k: v for k, v in pretrained_dict.items() |
|
if k in model_dict.keys()} |
|
model_dict.update(new_dict) |
|
print('Total : {} params are loaded.'.format(len(pretrained_dict))) |
|
roberta_model.load_state_dict(model_dict) |
|
print("loaded finished!") |
|
else: |
|
print('No checkpoint is included') |
|
return roberta_model |
|
|
|
|
|
def save_roberta_adapter_model(roberta_model: nn.Module, save_path: str, accelerator=None): |
|
model_dict = {k: v for k, v in roberta_model.state_dict().items() |
|
if 'adapter' in k} |
|
if accelerator is not None: |
|
accelerator.save(model_dict, save_path) |
|
else: |
|
torch.save(model_dict, save_path) |
|
|
|
|
|
def forward(self, t, input_ids, segment_ids, input_mask, s=None): |
|
output_dict = {} |
|
|
|
sequence_output, pooled_output = \ |
|
self.bert(input_ids=input_ids, token_type_ids=segment_ids, |
|
attention_mask=input_mask, t=t, s=s) |
|
masks = self.mask(t, s) |
|
pooled_output = self.dropout(pooled_output) |
|
|
|
y = self.last(sequence_output) |
|
output_dict['y'] = y |
|
output_dict['masks'] = masks |
|
return output_dict |
|
|
|
|
|
def forward_cls(self, t, input_ids, segment_ids, input_mask, start_mixup=None, s=None, l=None, idx=None, mix_type=None): |
|
output_dict = {} |
|
|
|
sequence_output, pooled_output = \ |
|
self.bert(input_ids=input_ids, token_type_ids=segment_ids, |
|
attention_mask=input_mask, t=t, s=s) |
|
masks = self.mask(t, s) |
|
pooled_output = self.dropout(pooled_output) |
|
|
|
y = self.last_cls(pooled_output) |
|
output_dict['y'] = y |
|
output_dict['masks'] = masks |
|
return output_dict |
|
|
|
|
|
def mask(roberta_model, t, s, adapter_type="sequential"): |
|
masks = {} |
|
for layer_id in range(len(roberta_model.roberta.encoder.layer)): |
|
if adapter_type == "sequential": |
|
fc1_key = 'roberta.encoder.layer.' + \ |
|
str(layer_id) + '.attention.output.adapter_mask.fc1' |
|
fc2_key = 'roberta.encoder.layer.' + \ |
|
str(layer_id) + '.attention.output.adapter_mask.fc2' |
|
|
|
masks[fc1_key], masks[fc2_key] = roberta_model.roberta.encoder.layer[ |
|
layer_id].attention.output.adapter_mask.mask( |
|
t, s) |
|
else: |
|
fc1_key = 'roberta.encoder.layer.' + \ |
|
str(layer_id) + '.attention.self.adapter_mask.fc1' |
|
fc2_key = 'roberta.encoder.layer.' + \ |
|
str(layer_id) + '.attention.self.adapter_mask.fc2' |
|
|
|
masks[fc1_key], masks[fc2_key] = roberta_model.roberta.encoder.layer[ |
|
layer_id].attention.self.adapter_mask.mask( |
|
t, s) |
|
|
|
fc1_key = 'roberta.encoder.layer.' + \ |
|
str(layer_id) + '.output.adapter_mask.fc1' |
|
fc2_key = 'roberta.encoder.layer.' + \ |
|
str(layer_id) + '.output.adapter_mask.fc2' |
|
|
|
masks[fc1_key], masks[fc2_key] = roberta_model.roberta.encoder.layer[layer_id].output.adapter_mask.mask( |
|
t, s) |
|
|
|
return masks |
|
|
|
|
|
def get_view_for(model, n, p, masks): |
|
for layer_id in range(12): |
|
if n == 'roberta.encoder.layer.' + str(layer_id) + '.attention.output.adapter_mask.fc1.weight': |
|
return masks[n.replace('.weight', '')].data.view(-1, 1).expand_as(p) |
|
elif n == 'roberta.encoder.layer.' + str(layer_id) + '.attention.output.adapter_mask.fc1.bias': |
|
return masks[n.replace('.bias', '')].data.view(-1) |
|
elif n == 'roberta.encoder.layer.' + str(layer_id) + '.attention.output.adapter_mask.fc2.weight': |
|
post = masks[n.replace('.weight', '')].data.view(-1, 1).expand_as(p) |
|
pre = masks[n.replace('.weight', '').replace('fc2', 'fc1')].data.view(1, -1).expand_as(p) |
|
return torch.min(post, pre) |
|
elif n == 'roberta.encoder.layer.' + str(layer_id) + '.attention.output.adapter_mask.fc2.bias': |
|
return masks[n.replace('.bias', '')].data.view(-1) |
|
elif n == 'roberta.encoder.layer.' + str(layer_id) + '.output.adapter_mask.fc1.weight': |
|
|
|
return masks[n.replace('.weight', '')].data.view(-1, 1).expand_as(p) |
|
elif n == 'roberta.encoder.layer.' + str(layer_id) + '.output.adapter_mask.fc1.bias': |
|
return masks[n.replace('.bias', '')].data.view(-1) |
|
elif n == 'roberta.encoder.layer.' + str(layer_id) + '.output.adapter_mask.fc2.weight': |
|
post = masks[n.replace('.weight', '')].data.view(-1, 1).expand_as(p) |
|
pre = masks[n.replace('.weight', '').replace('fc2', 'fc1')].data.view(1, -1).expand_as(p) |
|
return torch.min(post, pre) |
|
elif n == 'roberta.encoder.layer.' + str(layer_id) + '.output.adapter_mask.fc2.bias': |
|
return masks[n.replace('.bias', '')].data.view(-1) |
|
elif n == 'roberta.encoder.layer.' + str(layer_id) + '.attention.self.adapter_mask.fc1.weight': |
|
return masks[n.replace('.weight', '')].data.view(-1, 1).expand_as(p) |
|
elif n == 'roberta.encoder.layer.' + str(layer_id) + '.attention.self.adapter_mask.fc1.bias': |
|
return masks[n.replace('.bias', '')].data.view(-1) |
|
elif n == 'roberta.encoder.layer.' + str(layer_id) + '.attention.self.adapter_mask.fc2.weight': |
|
post = masks[n.replace('.weight', '')].data.view(-1, 1).expand_as(p) |
|
pre = masks[n.replace('.weight', '').replace('fc2', 'fc1')].data.view(1, -1).expand_as(p) |
|
return torch.min(post, pre) |
|
elif n == 'roberta.encoder.layer.' + str(layer_id) + '.attention.self.adapter_mask.fc2.bias': |
|
return masks[n.replace('.bias', '')].data.view(-1) |
|
return None |
|
|
|
import os |
|
import pdb |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.nn as nn |
|
import sys |
|
|
|
class RobertaMaskBasedModel: |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
for_end_task=False, |
|
use_prompt=True, |
|
**kwargs |
|
): |
|
|
|
outputs = super().forward( |
|
attention_mask=attention_mask, |
|
input_ids=input_ids, |
|
labels=labels, |
|
return_dict=return_dict, |
|
**kwargs |
|
) |
|
return outputs |
|
|
|
|
|
class RobertaMaskForMaskedLM(RobertaMaskBasedModel, RobertaForMaskedLM): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
adapter_config = AdapterMaskConfig( |
|
hidden_size=768, |
|
adapter_size=-1, |
|
adapter_act='relu', |
|
adapter_initializer_range=1e-2, |
|
ntasks=config.adapter_task, |
|
smax=config.smax, |
|
mode=config.adapter_mode, |
|
attn_adapter_size=config.attn_adapter_size, |
|
ffn_adapter_size=config.ffn_adapter_size, |
|
) |
|
self.roberta = add_roberta_adapters(self.roberta, adapter_config) |
|
|
|
class RobertaMaskForSequenceClassification(RobertaMaskBasedModel, RobertaForSequenceClassification): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
adapter_config = AdapterMaskConfig( |
|
hidden_size=768, |
|
adapter_size=-1, |
|
adapter_act='relu', |
|
adapter_initializer_range=1e-2, |
|
ntasks=config.adapter_task, |
|
smax=config.smax, |
|
mode=config.adapter_mode, |
|
attn_adapter_size=config.attn_adapter_size, |
|
ffn_adapter_size=config.ffn_adapter_size, |
|
) |
|
self.roberta = add_roberta_adapters(self.roberta, adapter_config) |