File size: 2,114 Bytes
b1c50f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Finetuned-mT5-Bangla2IPA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Finetuned-mT5-Bangla2IPA
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0529
- Wer: 0.0530
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 4.407 | 0.75 | 2000 | 1.4085 | 0.9726 |
| 0.9875 | 1.5 | 4000 | 0.2242 | 0.2198 |
| 0.3856 | 2.25 | 6000 | 0.1268 | 0.1266 |
| 0.2443 | 2.99 | 8000 | 0.0929 | 0.0958 |
| 0.1753 | 3.74 | 10000 | 0.0798 | 0.0827 |
| 0.1431 | 4.49 | 12000 | 0.0701 | 0.0731 |
| 0.121 | 5.24 | 14000 | 0.0649 | 0.0665 |
| 0.1046 | 5.99 | 16000 | 0.0614 | 0.0625 |
| 0.0914 | 6.74 | 18000 | 0.0585 | 0.0588 |
| 0.0821 | 7.49 | 20000 | 0.0556 | 0.0564 |
| 0.0747 | 8.23 | 22000 | 0.0554 | 0.0548 |
| 0.0707 | 8.98 | 24000 | 0.0535 | 0.0540 |
| 0.0646 | 9.73 | 26000 | 0.0529 | 0.0530 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|