--- license: apache-2.0 datasets: - timdettmers/openassistant-guanaco language: - en pipeline_tag: text-generation --- ## Anacondia Anacondia-70m is a Pythia-70m-deduped model fine-tuned with QLoRA on [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) ## Usage Anacondia is not intended for any downstream usage and was trained for educational purposes. Please consider more serious models for inference if this doesn't fall into your usage aim. ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0 ## Inference ```python #import necessary modules from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "UncleanCode/anacondia-70m" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) input= tokenizer("This is a sentence ",return_tensors="pt") output= model.generate(**input) tokenizer.decode(output[0]) ```