Text Generation
Transformers
Safetensors
dbrx
custom_code
text-generation-inference
Undi95 commited on
Commit
cfb9208
1 Parent(s): ea57a4d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -6
README.md CHANGED
@@ -72,7 +72,7 @@ If you are looking for the finetuned model, please use [DBRX Instruct](https://h
72
  Getting started with DBRX models is easy with the `transformers` library. The model requires ~264GB of RAM and the following packages:
73
 
74
  ```bash
75
- pip install transformers tiktoken
76
  ```
77
 
78
  If you'd like to speed up download time, you can use the `hf_transfer` package as described by Huggingface [here](https://huggingface.co/docs/huggingface_hub/en/guides/download#faster-downloads).
@@ -81,13 +81,16 @@ pip install hf_transfer
81
  export HF_HUB_ENABLE_HF_TRANSFER=1
82
  ```
83
 
 
 
 
84
  ### Run the model on a CPU:
85
  ```python
86
  from transformers import AutoTokenizer, AutoModelForCausalLM
87
  import torch
88
 
89
- tokenizer = AutoTokenizer.from_pretrained("Undi95/dbrx-base", trust_remote_code=True)
90
- model = AutoModelForCausalLM.from_pretrained("Undi95/dbrx-base", device_map="cpu", torch_dtype=torch.bfloat16, trust_remote_code=True)
91
 
92
  input_text = "Databricks was founded in "
93
  input_ids = tokenizer(input_text, return_tensors="pt")
@@ -101,8 +104,8 @@ print(tokenizer.decode(outputs[0]))
101
  from transformers import AutoTokenizer, AutoModelForCausalLM
102
  import torch
103
 
104
- tokenizer = AutoTokenizer.from_pretrained("Undi95/dbrx-base", trust_remote_code=True)
105
- model = AutoModelForCausalLM.from_pretrained("Undi95/dbrx-base", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
106
 
107
  input_text = "Databricks was founded in "
108
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
@@ -170,4 +173,4 @@ Full evaluation details can be found in our [technical blog post](https://www.da
170
  ## Acknowledgements
171
  The DBRX models were made possible thanks in large part to the open-source community, especially:
172
  * The [MegaBlocks](https://arxiv.org/abs/2211.15841) library, which established a foundation for our MoE implementation.
173
- * [PyTorch FSDP](https://arxiv.org/abs/2304.11277), which we built on for distributed training.
 
72
  Getting started with DBRX models is easy with the `transformers` library. The model requires ~264GB of RAM and the following packages:
73
 
74
  ```bash
75
+ pip install "transformers>=4.39.2" "tiktoken>=0.6.0"
76
  ```
77
 
78
  If you'd like to speed up download time, you can use the `hf_transfer` package as described by Huggingface [here](https://huggingface.co/docs/huggingface_hub/en/guides/download#faster-downloads).
 
81
  export HF_HUB_ENABLE_HF_TRANSFER=1
82
  ```
83
 
84
+ You will need to request access to this repository to download the model. Once this is granted,
85
+ [obtain an access token](https://huggingface.co/docs/hub/en/security-tokens) with `read` permission, and supply the token below.
86
+
87
  ### Run the model on a CPU:
88
  ```python
89
  from transformers import AutoTokenizer, AutoModelForCausalLM
90
  import torch
91
 
92
+ tokenizer = AutoTokenizer.from_pretrained("Undi95/dbrx-base", trust_remote_code=True, token="hf_YOUR_TOKEN")
93
+ model = AutoModelForCausalLM.from_pretrained("Undi95/dbrx-base", device_map="cpu", torch_dtype=torch.bfloat16, trust_remote_code=True, token="hf_YOUR_TOKEN")
94
 
95
  input_text = "Databricks was founded in "
96
  input_ids = tokenizer(input_text, return_tensors="pt")
 
104
  from transformers import AutoTokenizer, AutoModelForCausalLM
105
  import torch
106
 
107
+ tokenizer = AutoTokenizer.from_pretrained("Undi95/dbrx-base", trust_remote_code=True, token="hf_YOUR_TOKEN")
108
+ model = AutoModelForCausalLM.from_pretrained("Undi95/dbrx-base", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True, token="hf_YOUR_TOKEN")
109
 
110
  input_text = "Databricks was founded in "
111
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
 
173
  ## Acknowledgements
174
  The DBRX models were made possible thanks in large part to the open-source community, especially:
175
  * The [MegaBlocks](https://arxiv.org/abs/2211.15841) library, which established a foundation for our MoE implementation.
176
+ * [PyTorch FSDP](https://arxiv.org/abs/2304.11277), which we built on for distributed training.