--- library_name: peft tags: - generated_from_trainer base_model: NousResearch/Llama-2-7b-hf model-index: - name: NobodyExistsOnTheInternet/toxicqa results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: NousResearch/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: dataset type: sharegpt dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 128 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: toxicLlama-2-13B wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 eval_batch_size: 2 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# NobodyExistsOnTheInternet/toxicqa This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the [NobodyExistsOnTheInternet/toxicqa](https://huggingface.co/datasets/NobodyExistsOnTheInternet/toxicqa) dataset. It achieves the following results on the evaluation set: - Loss: 0.8100 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0748 | 0.0 | 1 | 1.1154 | | 0.8635 | 0.25 | 176 | 0.8732 | | 0.8284 | 0.5 | 352 | 0.8463 | | 0.7928 | 0.75 | 528 | 0.8295 | | 0.8313 | 1.0 | 704 | 0.8155 | | 0.6694 | 1.23 | 880 | 0.8196 | | 0.636 | 1.48 | 1056 | 0.8144 | | 0.6842 | 1.73 | 1232 | 0.8105 | | 0.6277 | 1.98 | 1408 | 0.8100 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0