File size: 25,547 Bytes
d98f069
fdbef41
 
 
3741cc9
fdbef41
 
 
d98f069
34342c0
3741cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34342c0
 
 
 
 
 
3741cc9
 
 
 
 
 
 
34342c0
3741cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34342c0
d98f069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ea19f7
d98f069
 
 
 
 
 
 
 
 
363937b
d98f069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33b6f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d98f069
4a77598
37127c4
4a77598
 
 
37127c4
 
 
 
 
 
4a77598
d98f069
 
 
 
 
 
 
 
 
 
 
 
 
7ea19f7
 
3741cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
---
language:
- de
- en
license: other
tags:
- two stage dpo
- dpo
license_name: llama3
license_link: LICENSE
extra_gated_prompt: "### META LLAMA 3 COMMUNITY LICENSE AGREEMENT\nMeta Llama 3 Version\
  \ Release Date: April 18, 2024\n\"Agreement\" means the terms and conditions for\
  \ use, reproduction, distribution and modification of the Llama Materials set forth\
  \ herein.\n\"Documentation\" means the specifications, manuals and documentation\
  \ accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/.\n\
  \"Licensee\" or \"you\" means you, or your employer or any other person or entity\
  \ (if you are entering into this Agreement on such person or entity’s behalf), of\
  \ the age required under applicable laws, rules or regulations to provide legal\
  \ consent and that has legal authority to bind your employer or such other person\
  \ or entity if you are entering in this Agreement on their behalf.\n\"Meta Llama\
  \ 3\" means the foundational large language models and software and algorithms,\
  \ including machine-learning model code, trained model weights, inference-enabling\
  \ code, training-enabling code, fine-tuning enabling code and other elements of\
  \ the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\
  \"Llama Materials\" means, collectively, Meta’s proprietary Meta Llama 3 and Documentation\
  \ (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"\
  we\" means Meta Platforms Ireland Limited (if you are located in or, if you are\
  \ an entity, your principal place of business is in the EEA or Switzerland) and\
  \ Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n\
  \   \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted\
  \ a non-exclusive, worldwide, non-transferable and royalty-free limited license\
  \ under Meta’s intellectual property or other rights owned by Meta embodied in the\
  \ Llama Materials to use, reproduce, distribute, copy, create derivative works of,\
  \ and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni.\
  \ If you distribute or make available the Llama Materials (or any derivative works\
  \ thereof), or a product or service that uses any of them, including another AI\
  \ model, you shall (A) provide a copy of this Agreement with any such Llama Materials;\
  \ and (B) prominently display “Built with Meta Llama 3” on a related website, user\
  \ interface, blogpost, about page, or product documentation. If you use the Llama\
  \ Materials to create, train, fine tune, or otherwise improve an AI model, which\
  \ is distributed or made available, you shall also include “Llama 3” at the beginning\
  \ of any such AI model name.\nii. If you receive Llama Materials, or any derivative\
  \ works thereof, from a Licensee as part  of an integrated end user product, then\
  \ Section 2 of this Agreement will not apply to you.\niii. You must retain in all\
  \ copies of the Llama Materials that you distribute the following attribution notice\
  \ within a “Notice” text file distributed as a part of such copies: “Meta Llama\
  \ 3 is licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms,\
  \ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\
  \ applicable laws and regulations (including trade compliance laws and regulations)\
  \ and adhere to the Acceptable Use Policy for the Llama Materials (available at\
  \ https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference\
  \ into this Agreement.\nv. You will not use the Llama Materials or any output or\
  \ results of the Llama Materials to improve any other large language model (excluding\
  \ Meta Llama 3 or derivative works thereof).\n2. Additional Commercial Terms. If,\
  \ on the Meta Llama 3 version release date, the monthly active users of the products\
  \ or services made available by or for Licensee, or Licensee’s affiliates, is greater\
  \ than 700 million monthly active users in the preceding calendar month, you must\
  \ request a license from Meta, which Meta may grant to you in its sole discretion,\
  \ and you are not authorized to exercise any of the rights under this Agreement\
  \ unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer\
  \ of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT\
  \ AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF\
  \ ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,\
  \ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY,\
  \ OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING\
  \ THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME\
  \ ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n\
  4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER\
  \ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY,\
  \ OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT,\
  \ SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META\
  \ OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n\
  5. Intellectual Property.\na. No trademark licenses are granted under this Agreement,\
  \ and in connection with the Llama Materials, neither Meta nor Licensee may use\
  \ any name or mark owned by or associated with the other or any of its affiliates,\
  \ except as required for reasonable and customary use in describing and redistributing\
  \ the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you\
  \ a license to use “Llama 3” (the “Mark”) solely as required to comply with the\
  \ last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently\
  \ accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All\
  \ goodwill arising out of your use of the Mark will inure to the benefit of Meta.\n\
  b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for\
  \ Meta, with respect to any derivative works and modifications of the Llama Materials\
  \ that are made by you, as between you and Meta, you are and will be the owner of\
  \ such derivative works and modifications.\nc. If you institute litigation or other\
  \ proceedings against Meta or any entity (including a cross-claim or counterclaim\
  \ in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results,\
  \ or any portion of any of the foregoing, constitutes infringement of intellectual\
  \ property or other rights owned or licensable by you, then any licenses granted\
  \ to you under this Agreement shall terminate as of the date such litigation or\
  \ claim is filed or instituted. You will indemnify and hold harmless Meta from and\
  \ against any claim by any third party arising out of or related to your use or\
  \ distribution of the Llama Materials.\n6. Term and Termination. The term of this\
  \ Agreement will commence upon your acceptance of this Agreement or access to the\
  \ Llama Materials and will continue in full force and effect until terminated in\
  \ accordance with the terms and conditions herein. Meta may terminate this Agreement\
  \ if you are in breach of any term or condition of this Agreement. Upon termination\
  \ of this Agreement, you shall delete and cease use of the Llama Materials. Sections\
  \ 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law\
  \ and Jurisdiction. This Agreement will be governed and construed under the laws\
  \ of the State of California without regard to choice of law principles, and the\
  \ UN Convention on Contracts for the International Sale of Goods does not apply\
  \ to this Agreement. The courts of California shall have exclusive jurisdiction\
  \ of any dispute arising out of this Agreement.\n### Meta Llama 3 Acceptable Use\
  \ Policy\nMeta is committed to promoting safe and fair use of its tools and features,\
  \ including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable\
  \ Use Policy (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)\n\
  #### Prohibited Uses\nWe want everyone to use Meta Llama 3 safely and responsibly.\
  \ You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate\
  \ the law or others’ rights, including to:\n    1. Engage in, promote, generate,\
  \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\
  \ or content, such as:\n        1. Violence or terrorism\n        2. Exploitation\
  \ or harm to children, including the solicitation, creation, acquisition, or dissemination\
  \ of child exploitative content or failure to report Child Sexual Abuse Material\n\
  \        3. Human trafficking, exploitation, and sexual violence\n        4. The\
  \ illegal distribution of information or materials to minors, including obscene\
  \ materials, or failure to employ legally required age-gating in connection with\
  \ such information or materials.\n        5. Sexual solicitation\n        6. Any\
  \ other criminal activity\n    2. Engage in, promote, incite, or facilitate the\
  \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\
  \    3. Engage in, promote, incite, or facilitate discrimination or other unlawful\
  \ or harmful conduct in the provision of employment, employment benefits, credit,\
  \ housing, other economic benefits, or other essential goods and services\n    4.\
  \ Engage in the unauthorized or unlicensed practice of any profession including,\
  \ but not limited to, financial, legal, medical/health, or related professional\
  \ practices\n    5. Collect, process, disclose, generate, or infer health, demographic,\
  \ or other sensitive personal or private information about individuals without rights\
  \ and consents required by applicable laws\n    6. Engage in or facilitate any action\
  \ or generate any content that infringes, misappropriates, or otherwise violates\
  \ any third-party rights, including the outputs or results of any products or services\
  \ using the Llama Materials\n    7. Create, generate, or facilitate the creation\
  \ of malicious code, malware, computer viruses or do anything else that could disable,\
  \ overburden, interfere with or impair the proper working, integrity, operation\
  \ or appearance of a website or computer system\n2. Engage in, promote, incite,\
  \ facilitate, or assist in the planning or development of activities that present\
  \ a risk of death or bodily harm to individuals, including use of Meta Llama 3 related\
  \ to the following:\n    1. Military, warfare, nuclear industries or applications,\
  \ espionage, use for materials or activities that are subject to the International\
  \ Traffic Arms Regulations (ITAR) maintained by the United States Department of\
  \ State\n    2. Guns and illegal weapons (including weapon development)\n    3.\
  \ Illegal drugs and regulated/controlled substances\n    4. Operation of critical\
  \ infrastructure, transportation technologies, or heavy machinery\n    5. Self-harm\
  \ or harm to others, including suicide, cutting, and eating disorders\n    6. Any\
  \ content intended to incite or promote violence, abuse, or any infliction of bodily\
  \ harm to an individual\n3. Intentionally deceive or mislead others, including use\
  \ of Meta Llama 3 related to the following:\n    1. Generating, promoting, or furthering\
  \ fraud or the creation or promotion of disinformation\n    2. Generating, promoting,\
  \ or furthering defamatory content, including the creation of defamatory statements,\
  \ images, or other content\n    3. Generating, promoting, or further distributing\
  \ spam\n    4. Impersonating another individual without consent, authorization,\
  \ or legal right\n    5. Representing that the use of Meta Llama 3 or outputs are\
  \ human-generated\n    6. Generating or facilitating false online engagement, including\
  \ fake reviews and other means of fake online engagement\n4. Fail to appropriately\
  \ disclose to end users any known dangers of your AI system\nPlease report any violation\
  \ of this Policy, software “bug,” or other problems that could lead to a violation\
  \ of this Policy through one of the following means:\n    * Reporting issues with\
  \ the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)\n\
  \    * Reporting risky content generated by the model:\n    developers.facebook.com/llama_output_feedback\n\
  \    * Reporting bugs and security concerns: facebook.com/whitehat/info\n    * Reporting\
  \ violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]"
extra_gated_fields:
  First Name: text
  Last Name: text
  Date of birth: date_picker
  Country: country
  Affiliation: text
  geo: ip_location
  ? By clicking Submit below I accept the terms of the license and acknowledge that
    the information I provide will be collected stored processed and shared in accordance
    with the Meta Privacy Policy
  : checkbox
extra_gated_description: The information you provide will be collected, stored, processed
  and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit
model-index:
- name: Llama-3-SauerkrautLM-8b-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 74.45
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 28.05
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 5.74
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.83
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.28
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.75
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
      name: Open LLM Leaderboard
---


![SauerkrautLM](https://vago-solutions.ai/wp-content/uploads/2024/04/Llama3-Pic.png "Llama-3-SauerkrautLM-8b-Instruct")
## VAGO solutions Llama-3-SauerkrautLM-8b-Instruct
Introducing **Llama-3-SauerkrautLM-8b-Instruct** – our Sauerkraut version of the powerful [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)!

The model **Llama-3-SauerkrautLM-8b-Instruct** is a **joint effort** between **VAGO Solutions** and **Hyperspace.ai.** 

- Aligned with **DPO**

# Table of Contents
1. [Overview of all Llama-3-SauerkrautLM-8b-Instruct](#all-Llama-3-SauerkrautLM-8b-Instruct)
2. [Model Details](#model-details)
   - [Prompt template](#prompt-template)
   - [Training procedure](#proceed-of-the-training)
3. [Evaluation](#evaluation)
5. [Disclaimer](#disclaimer)
6. [Contact](#contact)
7. [Collaborations](#collaborations)
8. [Acknowledgement](#acknowledgement)


## All SauerkrautLM-llama-3-8B-Instruct

| Model | HF    | EXL2  | GGUF  | AWQ  |
|-------|-------|-------|-------|-------|
| Llama-3-SauerkrautLM-8b-Instruct | [Link](https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct) | [Link](https://huggingface.co/bartowski/Llama-3-SauerkrautLM-8b-Instruct-exl2) | [Link](https://huggingface.co/bartowski/Llama-3-SauerkrautLM-8b-Instruct-GGUF) | coming soon |

## Model Details
**SauerkrautLM-llama-3-8B-Instruct**
- **Model Type:** Llama-3-SauerkrautLM-8b-Instruct is a finetuned Model based on [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
- **Language(s):** German, English
- **License:** [meta-llama](https://llama.meta.com/llama3/license)
- **Contact:** [VAGO solutions](https://vago-solutions.ai), [Hyperspace.ai](https://hyperspace.computer/)

### Training procedure:
- We trained this model in a two staged DPO Fine-Tuning for 1 epoch with 70k data and another epoch with 20k data.
- LaserRMT version coming soon

**We improved the model's capabilities noticably by feeding it with curated German data.**


### Prompt Template:

**English:**
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful AI assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>

Input<|eot_id|><|start_header_id|>assistant<|end_header_id|>

```

**German:**
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Du bist ein freundlicher und hilfreicher deutscher KI-Assistent.<|eot_id|><|start_header_id|>user<|end_header_id|>

Input<|eot_id|><|start_header_id|>assistant<|end_header_id|>

```
### Example output of german language:

```

Prompt: Erkläre mir die Vorteile für das Fine-Tuning von Meta's LLama Modellen.

Antwort:
Sehr gern!

Fine-tuning von Meta's LLaMA-Modellen ist eine sehr effektive Möglichkeit, um Ihre Anwendung oder Ihr Projekt mit einer hochentwickelten Sprachverarbeitung auszustatten.

Die Vorteile des Fine-Tunings von LLaMA-Modellen sind:

Adaptation an spezielle Aufgaben: Durch das Fine-Tuning können Sie die Modelle auf Ihre speziellen Bedürfnisse und Anforderungen anpassen.
Dies ermöglicht es Ihnen, die Leistung der Modelle in Ihren Anwendungen zu verbessern.

Verbesserte Genauigkeit: Die fine-tuned Modelle lernen, sich an die spezifischen Merkmale Ihres Datenbestands anzupassen, was zu einer besseren Genauigkeit bei der Textklassifizierung, -generierung, -summarisierung usw. führt.

Anpassung an Branche oder Domain: Wenn Sie beispielsweise ein Medizinprojekt haben, können Sie die Modelle auf medizinische Fachterminologie und -konzepte trainieren, um eine höhere Präzision bei der Analyse medizinischer Texte zu erzielen.

Kosten-Effektivität: Im Vergleich zum Training neuer Modelle von Grund auf kann das Fine-Tuning viel kosteneffektiver sein, da Sie nur einen kleinen Teil des Trainingsdatums benötigen, um die Modelle an Ihre spezifischen Anforderungen anzupassen.

Schnellere Entwicklung: Das Fine-Tuning ermöglicht es Entwicklern, schnell neue Funktionen und Features in ihre Anwendungen einzufügen, ohne dass sie lange warten müssen, bis neue Modelle trainiert werden.

Bessere Interpretierbarkeit: Da die fine-tuned Modelle auf Ihre spezifischen Daten bestimmt wurden, können Sie leichter verstehen, warum bestimmte Entscheidungen getroffen werden, was wichtig ist, wenn es um Transparenz und Verantwortlichkeit geht.

Insgesamt bietet das Fine-Tuning von LLaMA-Modellen eine flexible und effektive Möglichkeit, um Ihre Anwendungen und Projekte durch die Integration von fortschrittlichen Sprachmodellen zu verbessern.
```

## Evaluation

**Open LLM Leaderboard:**

evaluated with lm-evaluation-benchmark-harness 0.4.2
| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | **74.57**  |
| ARC (25-shot)         | 74.66          |
| HellaSwag (10-shot)   | 89.60   |
| MMLU (5-shot)         | 66.55 |
| TruthfulQA (0-shot)   | 66.32 |
| Winogrande (5-shot)   | 80.98  |
| GSM8K (5-shot)        | 69.29        |


**MT-Bench English**

```
########## First turn ########## 
                                         score 
model                            turn 
Llama-3-SauerkrautLM-8b-Instruct 1     8.15625 
  
########## Second turn ########## 
                                       score 
model                            turn 
Llama-3-SauerkrautLM-8b-Instruct 2      7.65 
  
########## Average ########## 
                                     score 
model 
Llama-3-SauerkrautLM-8b-Instruct  7.903125 *

```
* due to specific instruction training the english MT-Bench score is slightly lower than the original LLama-3-8B-Instruct


**MT-Bench German**

```
########## First turn ##########
                                       score
model                            turn
Llama-3-SauerkrautLM-8b-Instruct 1     7.675

########## Second turn ##########
                                        score
model                            turn
Llama-3-SauerkrautLM-8b-Instruct 2     7.6375

########## Average ##########
                                    score
model
Llama-3-SauerkrautLM-8b-Instruct  7.65625
```

**German RAG LLM Evaluation**
corrected result after FIX: https://github.com/huggingface/lighteval/pull/171
```
|                         Task                         |Version|Metric|Value|   |Stderr|
|------------------------------------------------------|------:|------|----:|---|-----:|
|all                                                   |       |acc   |0.910|±  |0.0084|
|community:german_rag_eval:_average:0                  |       |acc   |0.910|±  |0.0084|
|community:german_rag_eval:choose_context_by_question:0|      0|acc   |0.928|±  |0.0082|
|community:german_rag_eval:choose_question_by_context:0|      0|acc   |0.824|±  |0.0120|
|community:german_rag_eval:context_question_match:0    |      0|acc   |0.982|±  |0.0042|
|community:german_rag_eval:question_answer_match:0     |      0|acc   |0.906|±  |0.0092|
```

## Disclaimer
We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.
However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.
Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
 
## Contact
If you are interested in customized LLMs for business applications, please get in contact with us via our websites. We are also grateful for your feedback and suggestions.
 
## Collaborations
We are also keenly seeking support and investment for our startups, VAGO solutions and Hyperspace where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.de/#Kontakt), [Hyperspace.computer](https://hyperspace.computer/)

## Acknowledgement
Many thanks to [Meta](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) for providing such valuable model to the Open-Source community.
Also many thanks to [bartowski](https://huggingface.co/bartowski) for super fast quantification of our Model in GGUF and EXL format.

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_VAGOsolutions__Llama-3-SauerkrautLM-8b-Instruct)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |26.52|
|IFEval (0-Shot)    |74.45|
|BBH (3-Shot)       |28.05|
|MATH Lvl 5 (4-Shot)| 5.74|
|GPQA (0-shot)      | 7.83|
|MuSR (0-shot)      |11.28|
|MMLU-PRO (5-shot)  |31.75|